Loading…

The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current

The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of...

Full description

Saved in:
Bibliographic Details
Published in:Russian physics journal 2017-09, Vol.60 (5), p.908-914
Main Authors: Fadin, V. V., Aleutdinova, M. I., Potekaev, A. I., Kulikova, O. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of a composite surface layer whose structural constituents are the particles of FeO oxide, FCC- and BCC-iron, and quasi-amorphous initial material. Sliding of materials at the contact current density higher than 150 A/cm 2 gives rise to the formation of local, low-stability structures which, as a result of phase transformations, are observed as sectors of quasiliquid plastic flow on the sliding surface. It is shown that the average temperatures of the Cu – steel material contact do not exceed 300°С, i.e., none of the surface-layer constituents reaches its melting temperature. It is shown that quasi-liquid plastic flow favors stress relaxation and maintains the strength of the surface layer, which ensures its lower wear.
ISSN:1064-8887
1573-9228
DOI:10.1007/s11182-017-1156-x