Loading…

The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current

The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of...

Full description

Saved in:
Bibliographic Details
Published in:Russian physics journal 2017-09, Vol.60 (5), p.908-914
Main Authors: Fadin, V. V., Aleutdinova, M. I., Potekaev, A. I., Kulikova, O. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63
cites cdi_FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63
container_end_page 914
container_issue 5
container_start_page 908
container_title Russian physics journal
container_volume 60
creator Fadin, V. V.
Aleutdinova, M. I.
Potekaev, A. I.
Kulikova, O. A.
description The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of a composite surface layer whose structural constituents are the particles of FeO oxide, FCC- and BCC-iron, and quasi-amorphous initial material. Sliding of materials at the contact current density higher than 150 A/cm 2 gives rise to the formation of local, low-stability structures which, as a result of phase transformations, are observed as sectors of quasiliquid plastic flow on the sliding surface. It is shown that the average temperatures of the Cu – steel material contact do not exceed 300°С, i.e., none of the surface-layer constituents reaches its melting temperature. It is shown that quasi-liquid plastic flow favors stress relaxation and maintains the strength of the surface layer, which ensures its lower wear.
doi_str_mv 10.1007/s11182-017-1156-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935914318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935914318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82om2c3HUWr9gBYPrTchpEm2bll3a5IF--9NWQ9evEzCzPPMwIvQNZBbIETcRQCQtCAgCoCKF98naAKVYIWiVJ7mP-FlIaUU5-gixh0h2eJigt7XHx6vhlAb6_HCHHzAq2SSj7jp8NIn07aNxcvcCY1pY0Y3O2-Tdzj1-CEc8KptXNNtsekcnrd5FDI_G0LwXbpEZ3WW_NXvO0Vvj_P17LlYvD69zO4XhWXAU67WgM21Fo4LLpUzFXNOMso5VcYoLmq2Ka2TihJgtaKmLAnbVNIyxQxnU3Qz7t2H_mvwMeldP4Qun9SgWKWgZCAzBSNlQx9j8LXeh-bThIMGoo8h6jFEnUPUxxD1d3bo6MTMdlsf_mz-V_oBd-p0WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935914318</pqid></control><display><type>article</type><title>The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current</title><source>Springer Nature</source><creator>Fadin, V. V. ; Aleutdinova, M. I. ; Potekaev, A. I. ; Kulikova, O. A.</creator><creatorcontrib>Fadin, V. V. ; Aleutdinova, M. I. ; Potekaev, A. I. ; Kulikova, O. A.</creatorcontrib><description>The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of a composite surface layer whose structural constituents are the particles of FeO oxide, FCC- and BCC-iron, and quasi-amorphous initial material. Sliding of materials at the contact current density higher than 150 A/cm 2 gives rise to the formation of local, low-stability structures which, as a result of phase transformations, are observed as sectors of quasiliquid plastic flow on the sliding surface. It is shown that the average temperatures of the Cu – steel material contact do not exceed 300°С, i.e., none of the surface-layer constituents reaches its melting temperature. It is shown that quasi-liquid plastic flow favors stress relaxation and maintains the strength of the surface layer, which ensures its lower wear.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-017-1156-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amorphous materials ; Condensed Matter Physics ; Current density ; Electric contacts ; Face centered cubic lattice ; Hadrons ; Heavy Ions ; Iron constituents ; Lasers ; Mathematical and Computational Physics ; Microstructure ; Nuclear Physics ; Optical Devices ; Optics ; Particulate composites ; Phase transitions ; Photonics ; Physics ; Physics and Astronomy ; Plastic flow ; Sliding friction ; Stress relaxation ; Structural stability ; Surface layers ; Theoretical</subject><ispartof>Russian physics journal, 2017-09, Vol.60 (5), p.908-914</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63</citedby><cites>FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Fadin, V. V.</creatorcontrib><creatorcontrib>Aleutdinova, M. I.</creatorcontrib><creatorcontrib>Potekaev, A. I.</creatorcontrib><creatorcontrib>Kulikova, O. A.</creatorcontrib><title>The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of a composite surface layer whose structural constituents are the particles of FeO oxide, FCC- and BCC-iron, and quasi-amorphous initial material. Sliding of materials at the contact current density higher than 150 A/cm 2 gives rise to the formation of local, low-stability structures which, as a result of phase transformations, are observed as sectors of quasiliquid plastic flow on the sliding surface. It is shown that the average temperatures of the Cu – steel material contact do not exceed 300°С, i.e., none of the surface-layer constituents reaches its melting temperature. It is shown that quasi-liquid plastic flow favors stress relaxation and maintains the strength of the surface layer, which ensures its lower wear.</description><subject>Amorphous materials</subject><subject>Condensed Matter Physics</subject><subject>Current density</subject><subject>Electric contacts</subject><subject>Face centered cubic lattice</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Iron constituents</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Microstructure</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Particulate composites</subject><subject>Phase transitions</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plastic flow</subject><subject>Sliding friction</subject><subject>Stress relaxation</subject><subject>Structural stability</subject><subject>Surface layers</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82om2c3HUWr9gBYPrTchpEm2bll3a5IF--9NWQ9evEzCzPPMwIvQNZBbIETcRQCQtCAgCoCKF98naAKVYIWiVJ7mP-FlIaUU5-gixh0h2eJigt7XHx6vhlAb6_HCHHzAq2SSj7jp8NIn07aNxcvcCY1pY0Y3O2-Tdzj1-CEc8KptXNNtsekcnrd5FDI_G0LwXbpEZ3WW_NXvO0Vvj_P17LlYvD69zO4XhWXAU67WgM21Fo4LLpUzFXNOMso5VcYoLmq2Ka2TihJgtaKmLAnbVNIyxQxnU3Qz7t2H_mvwMeldP4Qun9SgWKWgZCAzBSNlQx9j8LXeh-bThIMGoo8h6jFEnUPUxxD1d3bo6MTMdlsf_mz-V_oBd-p0WA</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Fadin, V. V.</creator><creator>Aleutdinova, M. I.</creator><creator>Potekaev, A. I.</creator><creator>Kulikova, O. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170901</creationdate><title>The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current</title><author>Fadin, V. V. ; Aleutdinova, M. I. ; Potekaev, A. I. ; Kulikova, O. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amorphous materials</topic><topic>Condensed Matter Physics</topic><topic>Current density</topic><topic>Electric contacts</topic><topic>Face centered cubic lattice</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Iron constituents</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Microstructure</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Particulate composites</topic><topic>Phase transitions</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plastic flow</topic><topic>Sliding friction</topic><topic>Stress relaxation</topic><topic>Structural stability</topic><topic>Surface layers</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fadin, V. V.</creatorcontrib><creatorcontrib>Aleutdinova, M. I.</creatorcontrib><creatorcontrib>Potekaev, A. I.</creatorcontrib><creatorcontrib>Kulikova, O. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fadin, V. V.</au><au>Aleutdinova, M. I.</au><au>Potekaev, A. I.</au><au>Kulikova, O. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>60</volume><issue>5</issue><spage>908</spage><epage>914</epage><pages>908-914</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of a composite surface layer whose structural constituents are the particles of FeO oxide, FCC- and BCC-iron, and quasi-amorphous initial material. Sliding of materials at the contact current density higher than 150 A/cm 2 gives rise to the formation of local, low-stability structures which, as a result of phase transformations, are observed as sectors of quasiliquid plastic flow on the sliding surface. It is shown that the average temperatures of the Cu – steel material contact do not exceed 300°С, i.e., none of the surface-layer constituents reaches its melting temperature. It is shown that quasi-liquid plastic flow favors stress relaxation and maintains the strength of the surface layer, which ensures its lower wear.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-017-1156-x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2017-09, Vol.60 (5), p.908-914
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_1935914318
source Springer Nature
subjects Amorphous materials
Condensed Matter Physics
Current density
Electric contacts
Face centered cubic lattice
Hadrons
Heavy Ions
Iron constituents
Lasers
Mathematical and Computational Physics
Microstructure
Nuclear Physics
Optical Devices
Optics
Particulate composites
Phase transitions
Photonics
Physics
Physics and Astronomy
Plastic flow
Sliding friction
Stress relaxation
Structural stability
Surface layers
Theoretical
title The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Surface%20Layer%20States%20in%20Metallic%20Materials%20Subjected%20to%20Dry%20Sliding%20and%20Electric%20Current&rft.jtitle=Russian%20physics%20journal&rft.au=Fadin,%20V.%20V.&rft.date=2017-09-01&rft.volume=60&rft.issue=5&rft.spage=908&rft.epage=914&rft.pages=908-914&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-017-1156-x&rft_dat=%3Cproquest_cross%3E1935914318%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1935914318&rft_id=info:pmid/&rfr_iscdi=true