Loading…
The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current
The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of...
Saved in:
Published in: | Russian physics journal 2017-09, Vol.60 (5), p.908-914 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63 |
container_end_page | 914 |
container_issue | 5 |
container_start_page | 908 |
container_title | Russian physics journal |
container_volume | 60 |
creator | Fadin, V. V. Aleutdinova, M. I. Potekaev, A. I. Kulikova, O. A. |
description | The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of a composite surface layer whose structural constituents are the particles of FeO oxide, FCC- and BCC-iron, and quasi-amorphous initial material. Sliding of materials at the contact current density higher than 150 A/cm
2
gives rise to the formation of local, low-stability structures which, as a result of phase transformations, are observed as sectors of quasiliquid plastic flow on the sliding surface. It is shown that the average temperatures of the Cu – steel material contact do not exceed 300°С, i.e., none of the surface-layer constituents reaches its melting temperature. It is shown that quasi-liquid plastic flow favors stress relaxation and maintains the strength of the surface layer, which ensures its lower wear. |
doi_str_mv | 10.1007/s11182-017-1156-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935914318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935914318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82om2c3HUWr9gBYPrTchpEm2bll3a5IF--9NWQ9evEzCzPPMwIvQNZBbIETcRQCQtCAgCoCKF98naAKVYIWiVJ7mP-FlIaUU5-gixh0h2eJigt7XHx6vhlAb6_HCHHzAq2SSj7jp8NIn07aNxcvcCY1pY0Y3O2-Tdzj1-CEc8KptXNNtsekcnrd5FDI_G0LwXbpEZ3WW_NXvO0Vvj_P17LlYvD69zO4XhWXAU67WgM21Fo4LLpUzFXNOMso5VcYoLmq2Ka2TihJgtaKmLAnbVNIyxQxnU3Qz7t2H_mvwMeldP4Qun9SgWKWgZCAzBSNlQx9j8LXeh-bThIMGoo8h6jFEnUPUxxD1d3bo6MTMdlsf_mz-V_oBd-p0WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935914318</pqid></control><display><type>article</type><title>The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current</title><source>Springer Nature</source><creator>Fadin, V. V. ; Aleutdinova, M. I. ; Potekaev, A. I. ; Kulikova, O. A.</creator><creatorcontrib>Fadin, V. V. ; Aleutdinova, M. I. ; Potekaev, A. I. ; Kulikova, O. A.</creatorcontrib><description>The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of a composite surface layer whose structural constituents are the particles of FeO oxide, FCC- and BCC-iron, and quasi-amorphous initial material. Sliding of materials at the contact current density higher than 150 A/cm
2
gives rise to the formation of local, low-stability structures which, as a result of phase transformations, are observed as sectors of quasiliquid plastic flow on the sliding surface. It is shown that the average temperatures of the Cu – steel material contact do not exceed 300°С, i.e., none of the surface-layer constituents reaches its melting temperature. It is shown that quasi-liquid plastic flow favors stress relaxation and maintains the strength of the surface layer, which ensures its lower wear.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-017-1156-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amorphous materials ; Condensed Matter Physics ; Current density ; Electric contacts ; Face centered cubic lattice ; Hadrons ; Heavy Ions ; Iron constituents ; Lasers ; Mathematical and Computational Physics ; Microstructure ; Nuclear Physics ; Optical Devices ; Optics ; Particulate composites ; Phase transitions ; Photonics ; Physics ; Physics and Astronomy ; Plastic flow ; Sliding friction ; Stress relaxation ; Structural stability ; Surface layers ; Theoretical</subject><ispartof>Russian physics journal, 2017-09, Vol.60 (5), p.908-914</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63</citedby><cites>FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Fadin, V. V.</creatorcontrib><creatorcontrib>Aleutdinova, M. I.</creatorcontrib><creatorcontrib>Potekaev, A. I.</creatorcontrib><creatorcontrib>Kulikova, O. A.</creatorcontrib><title>The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of a composite surface layer whose structural constituents are the particles of FeO oxide, FCC- and BCC-iron, and quasi-amorphous initial material. Sliding of materials at the contact current density higher than 150 A/cm
2
gives rise to the formation of local, low-stability structures which, as a result of phase transformations, are observed as sectors of quasiliquid plastic flow on the sliding surface. It is shown that the average temperatures of the Cu – steel material contact do not exceed 300°С, i.e., none of the surface-layer constituents reaches its melting temperature. It is shown that quasi-liquid plastic flow favors stress relaxation and maintains the strength of the surface layer, which ensures its lower wear.</description><subject>Amorphous materials</subject><subject>Condensed Matter Physics</subject><subject>Current density</subject><subject>Electric contacts</subject><subject>Face centered cubic lattice</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Iron constituents</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Microstructure</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Particulate composites</subject><subject>Phase transitions</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plastic flow</subject><subject>Sliding friction</subject><subject>Stress relaxation</subject><subject>Structural stability</subject><subject>Surface layers</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82om2c3HUWr9gBYPrTchpEm2bll3a5IF--9NWQ9evEzCzPPMwIvQNZBbIETcRQCQtCAgCoCKF98naAKVYIWiVJ7mP-FlIaUU5-gixh0h2eJigt7XHx6vhlAb6_HCHHzAq2SSj7jp8NIn07aNxcvcCY1pY0Y3O2-Tdzj1-CEc8KptXNNtsekcnrd5FDI_G0LwXbpEZ3WW_NXvO0Vvj_P17LlYvD69zO4XhWXAU67WgM21Fo4LLpUzFXNOMso5VcYoLmq2Ka2TihJgtaKmLAnbVNIyxQxnU3Qz7t2H_mvwMeldP4Qun9SgWKWgZCAzBSNlQx9j8LXeh-bThIMGoo8h6jFEnUPUxxD1d3bo6MTMdlsf_mz-V_oBd-p0WA</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Fadin, V. V.</creator><creator>Aleutdinova, M. I.</creator><creator>Potekaev, A. I.</creator><creator>Kulikova, O. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170901</creationdate><title>The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current</title><author>Fadin, V. V. ; Aleutdinova, M. I. ; Potekaev, A. I. ; Kulikova, O. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amorphous materials</topic><topic>Condensed Matter Physics</topic><topic>Current density</topic><topic>Electric contacts</topic><topic>Face centered cubic lattice</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Iron constituents</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Microstructure</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Particulate composites</topic><topic>Phase transitions</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plastic flow</topic><topic>Sliding friction</topic><topic>Stress relaxation</topic><topic>Structural stability</topic><topic>Surface layers</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fadin, V. V.</creatorcontrib><creatorcontrib>Aleutdinova, M. I.</creatorcontrib><creatorcontrib>Potekaev, A. I.</creatorcontrib><creatorcontrib>Kulikova, O. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fadin, V. V.</au><au>Aleutdinova, M. I.</au><au>Potekaev, A. I.</au><au>Kulikova, O. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>60</volume><issue>5</issue><spage>908</spage><epage>914</epage><pages>908-914</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of a composite surface layer whose structural constituents are the particles of FeO oxide, FCC- and BCC-iron, and quasi-amorphous initial material. Sliding of materials at the contact current density higher than 150 A/cm
2
gives rise to the formation of local, low-stability structures which, as a result of phase transformations, are observed as sectors of quasiliquid plastic flow on the sliding surface. It is shown that the average temperatures of the Cu – steel material contact do not exceed 300°С, i.e., none of the surface-layer constituents reaches its melting temperature. It is shown that quasi-liquid plastic flow favors stress relaxation and maintains the strength of the surface layer, which ensures its lower wear.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-017-1156-x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2017-09, Vol.60 (5), p.908-914 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_proquest_journals_1935914318 |
source | Springer Nature |
subjects | Amorphous materials Condensed Matter Physics Current density Electric contacts Face centered cubic lattice Hadrons Heavy Ions Iron constituents Lasers Mathematical and Computational Physics Microstructure Nuclear Physics Optical Devices Optics Particulate composites Phase transitions Photonics Physics Physics and Astronomy Plastic flow Sliding friction Stress relaxation Structural stability Surface layers Theoretical |
title | The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Surface%20Layer%20States%20in%20Metallic%20Materials%20Subjected%20to%20Dry%20Sliding%20and%20Electric%20Current&rft.jtitle=Russian%20physics%20journal&rft.au=Fadin,%20V.%20V.&rft.date=2017-09-01&rft.volume=60&rft.issue=5&rft.spage=908&rft.epage=914&rft.pages=908-914&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-017-1156-x&rft_dat=%3Cproquest_cross%3E1935914318%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c3ca1cc3cf7d67689da53dd8326629aa967f3b4cd892013f92a4403b58c393a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1935914318&rft_id=info:pmid/&rfr_iscdi=true |