Loading…
Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory
A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic prop...
Saved in:
Published in: | Annual review of neuroscience 2017-07, Vol.40 (1), p.603-627 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3 |
container_end_page | 627 |
container_issue | 1 |
container_start_page | 603 |
container_title | Annual review of neuroscience |
container_volume | 40 |
creator | Zylberberg, Joel Strowbridge, Ben W |
description | A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory. |
doi_str_mv | 10.1146/annurev-neuro-070815-014006 |
format | article |
fullrecord | <record><control><sourceid>proquest_ZYWBE</sourceid><recordid>TN_cdi_proquest_journals_1936202740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1926682477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3</originalsourceid><addsrcrecordid>eNqVkV1rFTEQhoMo9lj9CxLojTerSTYfuwrScvALWi2o6F3I5kza1N2kJtkj59-busei3nkVmHnmzTvzInREyVNKuXxmQpgTbJsAc4oNUaSjoiGUEyLvoBUVXDScMnkXrWpRNbX89QA9yPmKENK3bX8fHbBOKUYJWyE4A3tpgs9TxtHhc0jZ5wKh4BNb_NaXHfYBr2Mq3poRr32ysy_5OT6POfthBPy-2qidj_OQSzIFMnYx4S8xffPhAp_BFNPuIbrnzJjh0f49RJ9fv_q0ftucfnjzbn1y2hhBeWkGQgc6WC6MG6gB4tpOEEWVopt-0wvBuDLOilZyEN0AzHRkY1pBHJWml71rD9HLRfd6HibY2LpH9aavk59M2ulovP67E_ylvohbLfpetJxWgSd7gRS_z5CLnny2MI4mQJyzpj2Tsqs-VEWP_kGv4pxCXa9SrWSEKU4q9WKhbKoHS-BuzVCib-LU-zj1rzj1Eqde4qzTj__c53b2d34VOF6AGxUzVh0PP_J__fETis24Lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936202740</pqid></control><display><type>article</type><title>Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory</title><source>Annual Reviews Open Access</source><creator>Zylberberg, Joel ; Strowbridge, Ben W</creator><creatorcontrib>Zylberberg, Joel ; Strowbridge, Ben W</creatorcontrib><description>A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory.</description><identifier>ISSN: 0147-006X</identifier><identifier>EISSN: 1545-4126</identifier><identifier>DOI: 10.1146/annurev-neuro-070815-014006</identifier><identifier>PMID: 28772102</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Action Potentials - physiology ; Animals ; attractor network ; Biophysics ; bistability ; Brain ; Cerebral Cortex - physiology ; Circuits ; Cortex ; feedback ; Memory ; Memory, Short-Term - physiology ; Models, Neurological ; neocortex ; Nerve Net - physiology ; Neural networks ; Neurons ; Neurons - physiology ; persistent activity ; plateau potential ; Short term memory ; synaptic transmission ; Synaptic Transmission - physiology</subject><ispartof>Annual review of neuroscience, 2017-07, Vol.40 (1), p.603-627</ispartof><rights>Copyright © 2017 by Annual Reviews. All rights reserved 2017</rights><rights>Copyright Annual Reviews, Inc. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3</citedby><cites>FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-070815-014006?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-070815-014006$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>230,314,780,784,885,27892,27924,27925,78274,78360,78379,78465</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1146/annurev-neuro-070815-014006$$EView_record_in_Annual_Reviews$$FView_record_in_$$GAnnual_Reviews</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28772102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zylberberg, Joel</creatorcontrib><creatorcontrib>Strowbridge, Ben W</creatorcontrib><title>Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory</title><title>Annual review of neuroscience</title><addtitle>Annu Rev Neurosci</addtitle><description>A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>attractor network</subject><subject>Biophysics</subject><subject>bistability</subject><subject>Brain</subject><subject>Cerebral Cortex - physiology</subject><subject>Circuits</subject><subject>Cortex</subject><subject>feedback</subject><subject>Memory</subject><subject>Memory, Short-Term - physiology</subject><subject>Models, Neurological</subject><subject>neocortex</subject><subject>Nerve Net - physiology</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>persistent activity</subject><subject>plateau potential</subject><subject>Short term memory</subject><subject>synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><issn>0147-006X</issn><issn>1545-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVkV1rFTEQhoMo9lj9CxLojTerSTYfuwrScvALWi2o6F3I5kza1N2kJtkj59-busei3nkVmHnmzTvzInREyVNKuXxmQpgTbJsAc4oNUaSjoiGUEyLvoBUVXDScMnkXrWpRNbX89QA9yPmKENK3bX8fHbBOKUYJWyE4A3tpgs9TxtHhc0jZ5wKh4BNb_NaXHfYBr2Mq3poRr32ysy_5OT6POfthBPy-2qidj_OQSzIFMnYx4S8xffPhAp_BFNPuIbrnzJjh0f49RJ9fv_q0ftucfnjzbn1y2hhBeWkGQgc6WC6MG6gB4tpOEEWVopt-0wvBuDLOilZyEN0AzHRkY1pBHJWml71rD9HLRfd6HibY2LpH9aavk59M2ulovP67E_ylvohbLfpetJxWgSd7gRS_z5CLnny2MI4mQJyzpj2Tsqs-VEWP_kGv4pxCXa9SrWSEKU4q9WKhbKoHS-BuzVCib-LU-zj1rzj1Eqde4qzTj__c53b2d34VOF6AGxUzVh0PP_J__fETis24Lg</recordid><startdate>20170725</startdate><enddate>20170725</enddate><creator>Zylberberg, Joel</creator><creator>Strowbridge, Ben W</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170725</creationdate><title>Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory</title><author>Zylberberg, Joel ; Strowbridge, Ben W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>attractor network</topic><topic>Biophysics</topic><topic>bistability</topic><topic>Brain</topic><topic>Cerebral Cortex - physiology</topic><topic>Circuits</topic><topic>Cortex</topic><topic>feedback</topic><topic>Memory</topic><topic>Memory, Short-Term - physiology</topic><topic>Models, Neurological</topic><topic>neocortex</topic><topic>Nerve Net - physiology</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>persistent activity</topic><topic>plateau potential</topic><topic>Short term memory</topic><topic>synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zylberberg, Joel</creatorcontrib><creatorcontrib>Strowbridge, Ben W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zylberberg, Joel</au><au>Strowbridge, Ben W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory</atitle><jtitle>Annual review of neuroscience</jtitle><addtitle>Annu Rev Neurosci</addtitle><date>2017-07-25</date><risdate>2017</risdate><volume>40</volume><issue>1</issue><spage>603</spage><epage>627</epage><pages>603-627</pages><issn>0147-006X</issn><eissn>1545-4126</eissn><abstract>A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>28772102</pmid><doi>10.1146/annurev-neuro-070815-014006</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0147-006X |
ispartof | Annual review of neuroscience, 2017-07, Vol.40 (1), p.603-627 |
issn | 0147-006X 1545-4126 |
language | eng |
recordid | cdi_proquest_journals_1936202740 |
source | Annual Reviews Open Access |
subjects | Action Potentials - physiology Animals attractor network Biophysics bistability Brain Cerebral Cortex - physiology Circuits Cortex feedback Memory Memory, Short-Term - physiology Models, Neurological neocortex Nerve Net - physiology Neural networks Neurons Neurons - physiology persistent activity plateau potential Short term memory synaptic transmission Synaptic Transmission - physiology |
title | Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ZYWBE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20Persistent%20Activity%20in%20Cortical%20Circuits:%20Possible%20Neural%20Substrates%20for%20Working%20Memory&rft.jtitle=Annual%20review%20of%20neuroscience&rft.au=Zylberberg,%20Joel&rft.date=2017-07-25&rft.volume=40&rft.issue=1&rft.spage=603&rft.epage=627&rft.pages=603-627&rft.issn=0147-006X&rft.eissn=1545-4126&rft_id=info:doi/10.1146/annurev-neuro-070815-014006&rft_dat=%3Cproquest_ZYWBE%3E1926682477%3C/proquest_ZYWBE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1936202740&rft_id=info:pmid/28772102&rfr_iscdi=true |