Loading…

Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory

A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic prop...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of neuroscience 2017-07, Vol.40 (1), p.603-627
Main Authors: Zylberberg, Joel, Strowbridge, Ben W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3
cites cdi_FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3
container_end_page 627
container_issue 1
container_start_page 603
container_title Annual review of neuroscience
container_volume 40
creator Zylberberg, Joel
Strowbridge, Ben W
description A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory.
doi_str_mv 10.1146/annurev-neuro-070815-014006
format article
fullrecord <record><control><sourceid>proquest_ZYWBE</sourceid><recordid>TN_cdi_proquest_journals_1936202740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1926682477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3</originalsourceid><addsrcrecordid>eNqVkV1rFTEQhoMo9lj9CxLojTerSTYfuwrScvALWi2o6F3I5kza1N2kJtkj59-busei3nkVmHnmzTvzInREyVNKuXxmQpgTbJsAc4oNUaSjoiGUEyLvoBUVXDScMnkXrWpRNbX89QA9yPmKENK3bX8fHbBOKUYJWyE4A3tpgs9TxtHhc0jZ5wKh4BNb_NaXHfYBr2Mq3poRr32ysy_5OT6POfthBPy-2qidj_OQSzIFMnYx4S8xffPhAp_BFNPuIbrnzJjh0f49RJ9fv_q0ftucfnjzbn1y2hhBeWkGQgc6WC6MG6gB4tpOEEWVopt-0wvBuDLOilZyEN0AzHRkY1pBHJWml71rD9HLRfd6HibY2LpH9aavk59M2ulovP67E_ylvohbLfpetJxWgSd7gRS_z5CLnny2MI4mQJyzpj2Tsqs-VEWP_kGv4pxCXa9SrWSEKU4q9WKhbKoHS-BuzVCib-LU-zj1rzj1Eqde4qzTj__c53b2d34VOF6AGxUzVh0PP_J__fETis24Lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936202740</pqid></control><display><type>article</type><title>Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory</title><source>Annual Reviews Open Access</source><creator>Zylberberg, Joel ; Strowbridge, Ben W</creator><creatorcontrib>Zylberberg, Joel ; Strowbridge, Ben W</creatorcontrib><description>A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory.</description><identifier>ISSN: 0147-006X</identifier><identifier>EISSN: 1545-4126</identifier><identifier>DOI: 10.1146/annurev-neuro-070815-014006</identifier><identifier>PMID: 28772102</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Action Potentials - physiology ; Animals ; attractor network ; Biophysics ; bistability ; Brain ; Cerebral Cortex - physiology ; Circuits ; Cortex ; feedback ; Memory ; Memory, Short-Term - physiology ; Models, Neurological ; neocortex ; Nerve Net - physiology ; Neural networks ; Neurons ; Neurons - physiology ; persistent activity ; plateau potential ; Short term memory ; synaptic transmission ; Synaptic Transmission - physiology</subject><ispartof>Annual review of neuroscience, 2017-07, Vol.40 (1), p.603-627</ispartof><rights>Copyright © 2017 by Annual Reviews. All rights reserved 2017</rights><rights>Copyright Annual Reviews, Inc. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3</citedby><cites>FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-070815-014006?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-070815-014006$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>230,314,780,784,885,27892,27924,27925,78274,78360,78379,78465</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1146/annurev-neuro-070815-014006$$EView_record_in_Annual_Reviews$$FView_record_in_$$GAnnual_Reviews</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28772102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zylberberg, Joel</creatorcontrib><creatorcontrib>Strowbridge, Ben W</creatorcontrib><title>Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory</title><title>Annual review of neuroscience</title><addtitle>Annu Rev Neurosci</addtitle><description>A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>attractor network</subject><subject>Biophysics</subject><subject>bistability</subject><subject>Brain</subject><subject>Cerebral Cortex - physiology</subject><subject>Circuits</subject><subject>Cortex</subject><subject>feedback</subject><subject>Memory</subject><subject>Memory, Short-Term - physiology</subject><subject>Models, Neurological</subject><subject>neocortex</subject><subject>Nerve Net - physiology</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>persistent activity</subject><subject>plateau potential</subject><subject>Short term memory</subject><subject>synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><issn>0147-006X</issn><issn>1545-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVkV1rFTEQhoMo9lj9CxLojTerSTYfuwrScvALWi2o6F3I5kza1N2kJtkj59-busei3nkVmHnmzTvzInREyVNKuXxmQpgTbJsAc4oNUaSjoiGUEyLvoBUVXDScMnkXrWpRNbX89QA9yPmKENK3bX8fHbBOKUYJWyE4A3tpgs9TxtHhc0jZ5wKh4BNb_NaXHfYBr2Mq3poRr32ysy_5OT6POfthBPy-2qidj_OQSzIFMnYx4S8xffPhAp_BFNPuIbrnzJjh0f49RJ9fv_q0ftucfnjzbn1y2hhBeWkGQgc6WC6MG6gB4tpOEEWVopt-0wvBuDLOilZyEN0AzHRkY1pBHJWml71rD9HLRfd6HibY2LpH9aavk59M2ulovP67E_ylvohbLfpetJxWgSd7gRS_z5CLnny2MI4mQJyzpj2Tsqs-VEWP_kGv4pxCXa9SrWSEKU4q9WKhbKoHS-BuzVCib-LU-zj1rzj1Eqde4qzTj__c53b2d34VOF6AGxUzVh0PP_J__fETis24Lg</recordid><startdate>20170725</startdate><enddate>20170725</enddate><creator>Zylberberg, Joel</creator><creator>Strowbridge, Ben W</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170725</creationdate><title>Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory</title><author>Zylberberg, Joel ; Strowbridge, Ben W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>attractor network</topic><topic>Biophysics</topic><topic>bistability</topic><topic>Brain</topic><topic>Cerebral Cortex - physiology</topic><topic>Circuits</topic><topic>Cortex</topic><topic>feedback</topic><topic>Memory</topic><topic>Memory, Short-Term - physiology</topic><topic>Models, Neurological</topic><topic>neocortex</topic><topic>Nerve Net - physiology</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>persistent activity</topic><topic>plateau potential</topic><topic>Short term memory</topic><topic>synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zylberberg, Joel</creatorcontrib><creatorcontrib>Strowbridge, Ben W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zylberberg, Joel</au><au>Strowbridge, Ben W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory</atitle><jtitle>Annual review of neuroscience</jtitle><addtitle>Annu Rev Neurosci</addtitle><date>2017-07-25</date><risdate>2017</risdate><volume>40</volume><issue>1</issue><spage>603</spage><epage>627</epage><pages>603-627</pages><issn>0147-006X</issn><eissn>1545-4126</eissn><abstract>A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>28772102</pmid><doi>10.1146/annurev-neuro-070815-014006</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0147-006X
ispartof Annual review of neuroscience, 2017-07, Vol.40 (1), p.603-627
issn 0147-006X
1545-4126
language eng
recordid cdi_proquest_journals_1936202740
source Annual Reviews Open Access
subjects Action Potentials - physiology
Animals
attractor network
Biophysics
bistability
Brain
Cerebral Cortex - physiology
Circuits
Cortex
feedback
Memory
Memory, Short-Term - physiology
Models, Neurological
neocortex
Nerve Net - physiology
Neural networks
Neurons
Neurons - physiology
persistent activity
plateau potential
Short term memory
synaptic transmission
Synaptic Transmission - physiology
title Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ZYWBE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20Persistent%20Activity%20in%20Cortical%20Circuits:%20Possible%20Neural%20Substrates%20for%20Working%20Memory&rft.jtitle=Annual%20review%20of%20neuroscience&rft.au=Zylberberg,%20Joel&rft.date=2017-07-25&rft.volume=40&rft.issue=1&rft.spage=603&rft.epage=627&rft.pages=603-627&rft.issn=0147-006X&rft.eissn=1545-4126&rft_id=info:doi/10.1146/annurev-neuro-070815-014006&rft_dat=%3Cproquest_ZYWBE%3E1926682477%3C/proquest_ZYWBE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a514t-b01b1bc45afb1ae0f385071771d9d955247afc5364e58be2a80da350f16a969f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1936202740&rft_id=info:pmid/28772102&rfr_iscdi=true