Loading…

Discovery of suprathermal Fe+ in Saturn's magnetosphere

Measurements in Saturn's equatorial magnetosphere from mid‐2004 through 2013 made by Cassini's charge‐energy‐mass ion spectrometer indicate the presence of a rare, suprathermal (83–167 keV/e) ion species at Saturn with mass ~56 amu that is likely Fe+. The abundance of Fe+ is only ~10−4 rel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2015-04, Vol.120 (4), p.2720-2738
Main Authors: Christon, S. P., Hamilton, D. C., Plane, J. M. C., Mitchell, D. G., DiFabio, R. D., Krimigis, S. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03
cites cdi_FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03
container_end_page 2738
container_issue 4
container_start_page 2720
container_title Journal of geophysical research. Space physics
container_volume 120
creator Christon, S. P.
Hamilton, D. C.
Plane, J. M. C.
Mitchell, D. G.
DiFabio, R. D.
Krimigis, S. M.
description Measurements in Saturn's equatorial magnetosphere from mid‐2004 through 2013 made by Cassini's charge‐energy‐mass ion spectrometer indicate the presence of a rare, suprathermal (83–167 keV/e) ion species at Saturn with mass ~56 amu that is likely Fe+. The abundance of Fe+ is only ~10−4 relative to that of W+ (O+, OH+, H2O+, and H3O+), the water group ions which dominate Saturn's suprathermal and thermal ions along with H+ and H2+. The radial variation of the Fe+ partial number density (PND) is distinctly different from that of W+ and most ions that comprise Saturn's suprathermal ion populations which, unlike thermal energy plasma ions, typically have a prominent PND peak at ~8–9 Rs (1 Saturn radius, Rs = 60,268 km). In contrast, the Fe+ PND decreases more or less exponentially from ~4 to ~20 Rs, our study's inner and outer limits. Fe+ may originate from metal layers produced by meteoric ablation near Saturn's mesosphere‐ionosphere boundary and/or possibly impacted interplanetary dust particles or the Saturn system's dark material in the main rings. Key Points Suprathermal Fe+ has been measured in Saturn's magnetosphere The source of the Fe+ might be impacting meteoroids or Saturn's dark material Suprathermal Fe+ appears to experience fewer losses than other ions near ~4 Rs
doi_str_mv 10.1002/2014JA020906
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1936319635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1936319635</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEtPYjR9QiQMHKDhJkzTHMdhgmmB8iWOUpil0bGtJOmD_nqAC4jRfbNnPa78yQvsYTjAAOSWAk3EfCEjgW6hDMJexTIBs_9Y0hV3U834GIdLQwqyDxHnpTfVu3TqqisivaqebF-sWeh4N7VFULqN73azc8tBHC_28tE3l6zC3e2in0HNvez-5ix6HFw-Dy3hyM7oa9Cex5gnIOMGaYpqmVBYZTwspjLBWpEAEaJzpHHKTG5YbnjMNBjNOQVqR5UVGiywxQLvooN1bu-ptZX2jZlWwE04qLCmnWHLKNlI8JYQRCSRQxy1lXOW9s4WqXbnQbq0wqO8fqv8_DDht8Y9ybtcbWTUe3fUZFsFSF8WtqvSN_fxTafequKCCqafrkTq7lUReT0FN6RdyMH8C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682252902</pqid></control><display><type>article</type><title>Discovery of suprathermal Fe+ in Saturn's magnetosphere</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Christon, S. P. ; Hamilton, D. C. ; Plane, J. M. C. ; Mitchell, D. G. ; DiFabio, R. D. ; Krimigis, S. M.</creator><creatorcontrib>Christon, S. P. ; Hamilton, D. C. ; Plane, J. M. C. ; Mitchell, D. G. ; DiFabio, R. D. ; Krimigis, S. M.</creatorcontrib><description>Measurements in Saturn's equatorial magnetosphere from mid‐2004 through 2013 made by Cassini's charge‐energy‐mass ion spectrometer indicate the presence of a rare, suprathermal (83–167 keV/e) ion species at Saturn with mass ~56 amu that is likely Fe+. The abundance of Fe+ is only ~10−4 relative to that of W+ (O+, OH+, H2O+, and H3O+), the water group ions which dominate Saturn's suprathermal and thermal ions along with H+ and H2+. The radial variation of the Fe+ partial number density (PND) is distinctly different from that of W+ and most ions that comprise Saturn's suprathermal ion populations which, unlike thermal energy plasma ions, typically have a prominent PND peak at ~8–9 Rs (1 Saturn radius, Rs = 60,268 km). In contrast, the Fe+ PND decreases more or less exponentially from ~4 to ~20 Rs, our study's inner and outer limits. Fe+ may originate from metal layers produced by meteoric ablation near Saturn's mesosphere‐ionosphere boundary and/or possibly impacted interplanetary dust particles or the Saturn system's dark material in the main rings. Key Points Suprathermal Fe+ has been measured in Saturn's magnetosphere The source of the Fe+ might be impacting meteoroids or Saturn's dark material Suprathermal Fe+ appears to experience fewer losses than other ions near ~4 Rs</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2014JA020906</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Ablation ; Abundance ; aurora ; Cassini mission ; Dust particles ; Interplanetary dust ; ion composition ; Ionosphere ; ionospheric metal layers ; Ions ; Iron ; Magnetosphere ; Magnetospheres ; Mesosphere ; Meteoroids ; Planetary magnetospheres ; Rare species ; rings ; Saturn ; Saturn magnetosphere ; suprathermal ions ; Thermal energy</subject><ispartof>Journal of geophysical research. Space physics, 2015-04, Vol.120 (4), p.2720-2738</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03</citedby><cites>FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Christon, S. P.</creatorcontrib><creatorcontrib>Hamilton, D. C.</creatorcontrib><creatorcontrib>Plane, J. M. C.</creatorcontrib><creatorcontrib>Mitchell, D. G.</creatorcontrib><creatorcontrib>DiFabio, R. D.</creatorcontrib><creatorcontrib>Krimigis, S. M.</creatorcontrib><title>Discovery of suprathermal Fe+ in Saturn's magnetosphere</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>Measurements in Saturn's equatorial magnetosphere from mid‐2004 through 2013 made by Cassini's charge‐energy‐mass ion spectrometer indicate the presence of a rare, suprathermal (83–167 keV/e) ion species at Saturn with mass ~56 amu that is likely Fe+. The abundance of Fe+ is only ~10−4 relative to that of W+ (O+, OH+, H2O+, and H3O+), the water group ions which dominate Saturn's suprathermal and thermal ions along with H+ and H2+. The radial variation of the Fe+ partial number density (PND) is distinctly different from that of W+ and most ions that comprise Saturn's suprathermal ion populations which, unlike thermal energy plasma ions, typically have a prominent PND peak at ~8–9 Rs (1 Saturn radius, Rs = 60,268 km). In contrast, the Fe+ PND decreases more or less exponentially from ~4 to ~20 Rs, our study's inner and outer limits. Fe+ may originate from metal layers produced by meteoric ablation near Saturn's mesosphere‐ionosphere boundary and/or possibly impacted interplanetary dust particles or the Saturn system's dark material in the main rings. Key Points Suprathermal Fe+ has been measured in Saturn's magnetosphere The source of the Fe+ might be impacting meteoroids or Saturn's dark material Suprathermal Fe+ appears to experience fewer losses than other ions near ~4 Rs</description><subject>Ablation</subject><subject>Abundance</subject><subject>aurora</subject><subject>Cassini mission</subject><subject>Dust particles</subject><subject>Interplanetary dust</subject><subject>ion composition</subject><subject>Ionosphere</subject><subject>ionospheric metal layers</subject><subject>Ions</subject><subject>Iron</subject><subject>Magnetosphere</subject><subject>Magnetospheres</subject><subject>Mesosphere</subject><subject>Meteoroids</subject><subject>Planetary magnetospheres</subject><subject>Rare species</subject><subject>rings</subject><subject>Saturn</subject><subject>Saturn magnetosphere</subject><subject>suprathermal ions</subject><subject>Thermal energy</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEtPYjR9QiQMHKDhJkzTHMdhgmmB8iWOUpil0bGtJOmD_nqAC4jRfbNnPa78yQvsYTjAAOSWAk3EfCEjgW6hDMJexTIBs_9Y0hV3U834GIdLQwqyDxHnpTfVu3TqqisivaqebF-sWeh4N7VFULqN73azc8tBHC_28tE3l6zC3e2in0HNvez-5ix6HFw-Dy3hyM7oa9Cex5gnIOMGaYpqmVBYZTwspjLBWpEAEaJzpHHKTG5YbnjMNBjNOQVqR5UVGiywxQLvooN1bu-ptZX2jZlWwE04qLCmnWHLKNlI8JYQRCSRQxy1lXOW9s4WqXbnQbq0wqO8fqv8_DDht8Y9ybtcbWTUe3fUZFsFSF8WtqvSN_fxTafequKCCqafrkTq7lUReT0FN6RdyMH8C</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Christon, S. P.</creator><creator>Hamilton, D. C.</creator><creator>Plane, J. M. C.</creator><creator>Mitchell, D. G.</creator><creator>DiFabio, R. D.</creator><creator>Krimigis, S. M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201504</creationdate><title>Discovery of suprathermal Fe+ in Saturn's magnetosphere</title><author>Christon, S. P. ; Hamilton, D. C. ; Plane, J. M. C. ; Mitchell, D. G. ; DiFabio, R. D. ; Krimigis, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ablation</topic><topic>Abundance</topic><topic>aurora</topic><topic>Cassini mission</topic><topic>Dust particles</topic><topic>Interplanetary dust</topic><topic>ion composition</topic><topic>Ionosphere</topic><topic>ionospheric metal layers</topic><topic>Ions</topic><topic>Iron</topic><topic>Magnetosphere</topic><topic>Magnetospheres</topic><topic>Mesosphere</topic><topic>Meteoroids</topic><topic>Planetary magnetospheres</topic><topic>Rare species</topic><topic>rings</topic><topic>Saturn</topic><topic>Saturn magnetosphere</topic><topic>suprathermal ions</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christon, S. P.</creatorcontrib><creatorcontrib>Hamilton, D. C.</creatorcontrib><creatorcontrib>Plane, J. M. C.</creatorcontrib><creatorcontrib>Mitchell, D. G.</creatorcontrib><creatorcontrib>DiFabio, R. D.</creatorcontrib><creatorcontrib>Krimigis, S. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christon, S. P.</au><au>Hamilton, D. C.</au><au>Plane, J. M. C.</au><au>Mitchell, D. G.</au><au>DiFabio, R. D.</au><au>Krimigis, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of suprathermal Fe+ in Saturn's magnetosphere</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2015-04</date><risdate>2015</risdate><volume>120</volume><issue>4</issue><spage>2720</spage><epage>2738</epage><pages>2720-2738</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Measurements in Saturn's equatorial magnetosphere from mid‐2004 through 2013 made by Cassini's charge‐energy‐mass ion spectrometer indicate the presence of a rare, suprathermal (83–167 keV/e) ion species at Saturn with mass ~56 amu that is likely Fe+. The abundance of Fe+ is only ~10−4 relative to that of W+ (O+, OH+, H2O+, and H3O+), the water group ions which dominate Saturn's suprathermal and thermal ions along with H+ and H2+. The radial variation of the Fe+ partial number density (PND) is distinctly different from that of W+ and most ions that comprise Saturn's suprathermal ion populations which, unlike thermal energy plasma ions, typically have a prominent PND peak at ~8–9 Rs (1 Saturn radius, Rs = 60,268 km). In contrast, the Fe+ PND decreases more or less exponentially from ~4 to ~20 Rs, our study's inner and outer limits. Fe+ may originate from metal layers produced by meteoric ablation near Saturn's mesosphere‐ionosphere boundary and/or possibly impacted interplanetary dust particles or the Saturn system's dark material in the main rings. Key Points Suprathermal Fe+ has been measured in Saturn's magnetosphere The source of the Fe+ might be impacting meteoroids or Saturn's dark material Suprathermal Fe+ appears to experience fewer losses than other ions near ~4 Rs</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JA020906</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2015-04, Vol.120 (4), p.2720-2738
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_1936319635
source Wiley-Blackwell Read & Publish Collection
subjects Ablation
Abundance
aurora
Cassini mission
Dust particles
Interplanetary dust
ion composition
Ionosphere
ionospheric metal layers
Ions
Iron
Magnetosphere
Magnetospheres
Mesosphere
Meteoroids
Planetary magnetospheres
Rare species
rings
Saturn
Saturn magnetosphere
suprathermal ions
Thermal energy
title Discovery of suprathermal Fe+ in Saturn's magnetosphere
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20suprathermal%20Fe+%20in%20Saturn's%20magnetosphere&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Christon,%20S.%20P.&rft.date=2015-04&rft.volume=120&rft.issue=4&rft.spage=2720&rft.epage=2738&rft.pages=2720-2738&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2014JA020906&rft_dat=%3Cproquest_cross%3E1936319635%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1682252902&rft_id=info:pmid/&rfr_iscdi=true