Loading…
Discovery of suprathermal Fe+ in Saturn's magnetosphere
Measurements in Saturn's equatorial magnetosphere from mid‐2004 through 2013 made by Cassini's charge‐energy‐mass ion spectrometer indicate the presence of a rare, suprathermal (83–167 keV/e) ion species at Saturn with mass ~56 amu that is likely Fe+. The abundance of Fe+ is only ~10−4 rel...
Saved in:
Published in: | Journal of geophysical research. Space physics 2015-04, Vol.120 (4), p.2720-2738 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03 |
---|---|
cites | cdi_FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03 |
container_end_page | 2738 |
container_issue | 4 |
container_start_page | 2720 |
container_title | Journal of geophysical research. Space physics |
container_volume | 120 |
creator | Christon, S. P. Hamilton, D. C. Plane, J. M. C. Mitchell, D. G. DiFabio, R. D. Krimigis, S. M. |
description | Measurements in Saturn's equatorial magnetosphere from mid‐2004 through 2013 made by Cassini's charge‐energy‐mass ion spectrometer indicate the presence of a rare, suprathermal (83–167 keV/e) ion species at Saturn with mass ~56 amu that is likely Fe+. The abundance of Fe+ is only ~10−4 relative to that of W+ (O+, OH+, H2O+, and H3O+), the water group ions which dominate Saturn's suprathermal and thermal ions along with H+ and H2+. The radial variation of the Fe+ partial number density (PND) is distinctly different from that of W+ and most ions that comprise Saturn's suprathermal ion populations which, unlike thermal energy plasma ions, typically have a prominent PND peak at ~8–9 Rs (1 Saturn radius, Rs = 60,268 km). In contrast, the Fe+ PND decreases more or less exponentially from ~4 to ~20 Rs, our study's inner and outer limits. Fe+ may originate from metal layers produced by meteoric ablation near Saturn's mesosphere‐ionosphere boundary and/or possibly impacted interplanetary dust particles or the Saturn system's dark material in the main rings.
Key Points
Suprathermal Fe+ has been measured in Saturn's magnetosphere
The source of the Fe+ might be impacting meteoroids or Saturn's dark material
Suprathermal Fe+ appears to experience fewer losses than other ions near ~4 Rs |
doi_str_mv | 10.1002/2014JA020906 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1936319635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1936319635</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEtPYjR9QiQMHKDhJkzTHMdhgmmB8iWOUpil0bGtJOmD_nqAC4jRfbNnPa78yQvsYTjAAOSWAk3EfCEjgW6hDMJexTIBs_9Y0hV3U834GIdLQwqyDxHnpTfVu3TqqisivaqebF-sWeh4N7VFULqN73azc8tBHC_28tE3l6zC3e2in0HNvez-5ix6HFw-Dy3hyM7oa9Cex5gnIOMGaYpqmVBYZTwspjLBWpEAEaJzpHHKTG5YbnjMNBjNOQVqR5UVGiywxQLvooN1bu-ptZX2jZlWwE04qLCmnWHLKNlI8JYQRCSRQxy1lXOW9s4WqXbnQbq0wqO8fqv8_DDht8Y9ybtcbWTUe3fUZFsFSF8WtqvSN_fxTafequKCCqafrkTq7lUReT0FN6RdyMH8C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682252902</pqid></control><display><type>article</type><title>Discovery of suprathermal Fe+ in Saturn's magnetosphere</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Christon, S. P. ; Hamilton, D. C. ; Plane, J. M. C. ; Mitchell, D. G. ; DiFabio, R. D. ; Krimigis, S. M.</creator><creatorcontrib>Christon, S. P. ; Hamilton, D. C. ; Plane, J. M. C. ; Mitchell, D. G. ; DiFabio, R. D. ; Krimigis, S. M.</creatorcontrib><description>Measurements in Saturn's equatorial magnetosphere from mid‐2004 through 2013 made by Cassini's charge‐energy‐mass ion spectrometer indicate the presence of a rare, suprathermal (83–167 keV/e) ion species at Saturn with mass ~56 amu that is likely Fe+. The abundance of Fe+ is only ~10−4 relative to that of W+ (O+, OH+, H2O+, and H3O+), the water group ions which dominate Saturn's suprathermal and thermal ions along with H+ and H2+. The radial variation of the Fe+ partial number density (PND) is distinctly different from that of W+ and most ions that comprise Saturn's suprathermal ion populations which, unlike thermal energy plasma ions, typically have a prominent PND peak at ~8–9 Rs (1 Saturn radius, Rs = 60,268 km). In contrast, the Fe+ PND decreases more or less exponentially from ~4 to ~20 Rs, our study's inner and outer limits. Fe+ may originate from metal layers produced by meteoric ablation near Saturn's mesosphere‐ionosphere boundary and/or possibly impacted interplanetary dust particles or the Saturn system's dark material in the main rings.
Key Points
Suprathermal Fe+ has been measured in Saturn's magnetosphere
The source of the Fe+ might be impacting meteoroids or Saturn's dark material
Suprathermal Fe+ appears to experience fewer losses than other ions near ~4 Rs</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2014JA020906</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Ablation ; Abundance ; aurora ; Cassini mission ; Dust particles ; Interplanetary dust ; ion composition ; Ionosphere ; ionospheric metal layers ; Ions ; Iron ; Magnetosphere ; Magnetospheres ; Mesosphere ; Meteoroids ; Planetary magnetospheres ; Rare species ; rings ; Saturn ; Saturn magnetosphere ; suprathermal ions ; Thermal energy</subject><ispartof>Journal of geophysical research. Space physics, 2015-04, Vol.120 (4), p.2720-2738</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03</citedby><cites>FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Christon, S. P.</creatorcontrib><creatorcontrib>Hamilton, D. C.</creatorcontrib><creatorcontrib>Plane, J. M. C.</creatorcontrib><creatorcontrib>Mitchell, D. G.</creatorcontrib><creatorcontrib>DiFabio, R. D.</creatorcontrib><creatorcontrib>Krimigis, S. M.</creatorcontrib><title>Discovery of suprathermal Fe+ in Saturn's magnetosphere</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>Measurements in Saturn's equatorial magnetosphere from mid‐2004 through 2013 made by Cassini's charge‐energy‐mass ion spectrometer indicate the presence of a rare, suprathermal (83–167 keV/e) ion species at Saturn with mass ~56 amu that is likely Fe+. The abundance of Fe+ is only ~10−4 relative to that of W+ (O+, OH+, H2O+, and H3O+), the water group ions which dominate Saturn's suprathermal and thermal ions along with H+ and H2+. The radial variation of the Fe+ partial number density (PND) is distinctly different from that of W+ and most ions that comprise Saturn's suprathermal ion populations which, unlike thermal energy plasma ions, typically have a prominent PND peak at ~8–9 Rs (1 Saturn radius, Rs = 60,268 km). In contrast, the Fe+ PND decreases more or less exponentially from ~4 to ~20 Rs, our study's inner and outer limits. Fe+ may originate from metal layers produced by meteoric ablation near Saturn's mesosphere‐ionosphere boundary and/or possibly impacted interplanetary dust particles or the Saturn system's dark material in the main rings.
Key Points
Suprathermal Fe+ has been measured in Saturn's magnetosphere
The source of the Fe+ might be impacting meteoroids or Saturn's dark material
Suprathermal Fe+ appears to experience fewer losses than other ions near ~4 Rs</description><subject>Ablation</subject><subject>Abundance</subject><subject>aurora</subject><subject>Cassini mission</subject><subject>Dust particles</subject><subject>Interplanetary dust</subject><subject>ion composition</subject><subject>Ionosphere</subject><subject>ionospheric metal layers</subject><subject>Ions</subject><subject>Iron</subject><subject>Magnetosphere</subject><subject>Magnetospheres</subject><subject>Mesosphere</subject><subject>Meteoroids</subject><subject>Planetary magnetospheres</subject><subject>Rare species</subject><subject>rings</subject><subject>Saturn</subject><subject>Saturn magnetosphere</subject><subject>suprathermal ions</subject><subject>Thermal energy</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEtPYjR9QiQMHKDhJkzTHMdhgmmB8iWOUpil0bGtJOmD_nqAC4jRfbNnPa78yQvsYTjAAOSWAk3EfCEjgW6hDMJexTIBs_9Y0hV3U834GIdLQwqyDxHnpTfVu3TqqisivaqebF-sWeh4N7VFULqN73azc8tBHC_28tE3l6zC3e2in0HNvez-5ix6HFw-Dy3hyM7oa9Cex5gnIOMGaYpqmVBYZTwspjLBWpEAEaJzpHHKTG5YbnjMNBjNOQVqR5UVGiywxQLvooN1bu-ptZX2jZlWwE04qLCmnWHLKNlI8JYQRCSRQxy1lXOW9s4WqXbnQbq0wqO8fqv8_DDht8Y9ybtcbWTUe3fUZFsFSF8WtqvSN_fxTafequKCCqafrkTq7lUReT0FN6RdyMH8C</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Christon, S. P.</creator><creator>Hamilton, D. C.</creator><creator>Plane, J. M. C.</creator><creator>Mitchell, D. G.</creator><creator>DiFabio, R. D.</creator><creator>Krimigis, S. M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201504</creationdate><title>Discovery of suprathermal Fe+ in Saturn's magnetosphere</title><author>Christon, S. P. ; Hamilton, D. C. ; Plane, J. M. C. ; Mitchell, D. G. ; DiFabio, R. D. ; Krimigis, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ablation</topic><topic>Abundance</topic><topic>aurora</topic><topic>Cassini mission</topic><topic>Dust particles</topic><topic>Interplanetary dust</topic><topic>ion composition</topic><topic>Ionosphere</topic><topic>ionospheric metal layers</topic><topic>Ions</topic><topic>Iron</topic><topic>Magnetosphere</topic><topic>Magnetospheres</topic><topic>Mesosphere</topic><topic>Meteoroids</topic><topic>Planetary magnetospheres</topic><topic>Rare species</topic><topic>rings</topic><topic>Saturn</topic><topic>Saturn magnetosphere</topic><topic>suprathermal ions</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christon, S. P.</creatorcontrib><creatorcontrib>Hamilton, D. C.</creatorcontrib><creatorcontrib>Plane, J. M. C.</creatorcontrib><creatorcontrib>Mitchell, D. G.</creatorcontrib><creatorcontrib>DiFabio, R. D.</creatorcontrib><creatorcontrib>Krimigis, S. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christon, S. P.</au><au>Hamilton, D. C.</au><au>Plane, J. M. C.</au><au>Mitchell, D. G.</au><au>DiFabio, R. D.</au><au>Krimigis, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of suprathermal Fe+ in Saturn's magnetosphere</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2015-04</date><risdate>2015</risdate><volume>120</volume><issue>4</issue><spage>2720</spage><epage>2738</epage><pages>2720-2738</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Measurements in Saturn's equatorial magnetosphere from mid‐2004 through 2013 made by Cassini's charge‐energy‐mass ion spectrometer indicate the presence of a rare, suprathermal (83–167 keV/e) ion species at Saturn with mass ~56 amu that is likely Fe+. The abundance of Fe+ is only ~10−4 relative to that of W+ (O+, OH+, H2O+, and H3O+), the water group ions which dominate Saturn's suprathermal and thermal ions along with H+ and H2+. The radial variation of the Fe+ partial number density (PND) is distinctly different from that of W+ and most ions that comprise Saturn's suprathermal ion populations which, unlike thermal energy plasma ions, typically have a prominent PND peak at ~8–9 Rs (1 Saturn radius, Rs = 60,268 km). In contrast, the Fe+ PND decreases more or less exponentially from ~4 to ~20 Rs, our study's inner and outer limits. Fe+ may originate from metal layers produced by meteoric ablation near Saturn's mesosphere‐ionosphere boundary and/or possibly impacted interplanetary dust particles or the Saturn system's dark material in the main rings.
Key Points
Suprathermal Fe+ has been measured in Saturn's magnetosphere
The source of the Fe+ might be impacting meteoroids or Saturn's dark material
Suprathermal Fe+ appears to experience fewer losses than other ions near ~4 Rs</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JA020906</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2015-04, Vol.120 (4), p.2720-2738 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_1936319635 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Ablation Abundance aurora Cassini mission Dust particles Interplanetary dust ion composition Ionosphere ionospheric metal layers Ions Iron Magnetosphere Magnetospheres Mesosphere Meteoroids Planetary magnetospheres Rare species rings Saturn Saturn magnetosphere suprathermal ions Thermal energy |
title | Discovery of suprathermal Fe+ in Saturn's magnetosphere |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20suprathermal%20Fe+%20in%20Saturn's%20magnetosphere&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Christon,%20S.%20P.&rft.date=2015-04&rft.volume=120&rft.issue=4&rft.spage=2720&rft.epage=2738&rft.pages=2720-2738&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2014JA020906&rft_dat=%3Cproquest_cross%3E1936319635%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a6409-41a3138839fb68f97c7ee780270a1bad0dcdc5dc6d5a0c156309e7bdfb3fb4c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1682252902&rft_id=info:pmid/&rfr_iscdi=true |