One-Pot Biocatalytic Double Oxidation of [alpha]-Isophorone for the Synthesis of Ketoisophorone
The chemical synthesis of ketoisophorone, a valuable building block of vitamins and pharmaceuticals, suffers from several drawbacks in terms of reaction conditions and selectivity. Herein, the first biocatalytic one-pot double oxidation of the readily available [alpha]-isophorone to ketoisophorone i...
Saved in:
Published in: | ChemCatChem 2017-09, Vol.9 (17), p.3338 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The chemical synthesis of ketoisophorone, a valuable building block of vitamins and pharmaceuticals, suffers from several drawbacks in terms of reaction conditions and selectivity. Herein, the first biocatalytic one-pot double oxidation of the readily available [alpha]-isophorone to ketoisophorone is described. Variants of the self-sufficient P450cam-RhFRed with improved activity have been identified to perform the first step of the designed cascade (regio- and enantioselective allylic oxidation of [alpha]-isophorone to 4-hydroxy-[alpha]-isophorone). For the second step, the screening of a broad panel of alcohol dehydrogenases (ADHs) led to the identification of Cm-ADH10 from Candida magnoliae. The crystal structure of Cm-ADH10 was solved and docking experiments confirmed the preferred position and geometry of the substrate for catalysis. The synthesis of ketoisophorone was demonstrated both as a one-pot two-step process and as a cascade process employing designer cells co-expressing the two biocatalysts, with a productivity of up to 1.4gL-1d-1. |
---|---|
ISSN: | 1867-3880 1867-3899 |
DOI: | 10.1002/cctc.201700620 |