Loading…

Anisotropic elastic-plastic deformation of paper: In-plane model

Laminated paperboard and paper is widely used in packaging products. It generally exhibits highly anisotropic and nonlinear mechanical behavior. The aim of this study is to describe the in-plane material behavior with an orthotropic elastic-plastic model based on the observed experimental behavior....

Full description

Saved in:
Bibliographic Details
Published in:International journal of solids and structures 2016-12, Vol.100-101, p.286-296
Main Authors: Li, Yujun, Stapleton, Scott Edward, Reese, Stefanie, Simon, Jaan-Willem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-9b1b5d5831721d2999c7892c7b562eee07e91732ca1eac7fa2de31b0d1dfbb7a3
cites cdi_FETCH-LOGICAL-c340t-9b1b5d5831721d2999c7892c7b562eee07e91732ca1eac7fa2de31b0d1dfbb7a3
container_end_page 296
container_issue
container_start_page 286
container_title International journal of solids and structures
container_volume 100-101
creator Li, Yujun
Stapleton, Scott Edward
Reese, Stefanie
Simon, Jaan-Willem
description Laminated paperboard and paper is widely used in packaging products. It generally exhibits highly anisotropic and nonlinear mechanical behavior. The aim of this study is to describe the in-plane material behavior with an orthotropic elastic-plastic model based on the observed experimental behavior. A structural tensor-based approach was applied to model the elastic deformation, while a multi-surface based yield criterion was adopted to describe the yield behavior. The model incorporated nonlinear kinematic and isotropic hardening to capture the anisotropic hardening effect. In the experiment, the compressive yield stress was found to be insensitive to the previous tensile deformation. The proposed model could capture this compression yield stress preserving effect under reverse loading, which in turn reduced the required material parameters as expected. With the material parameters calibrated from a set of simple uniaxial tests in various directions, the model was shown to predict the stress-strain behavior for other orientations satisfactorily. The model was further validated with experiments under complex loading conditions and found to capture the highly anisotropic, elastic-plastic behavior accurately.
doi_str_mv 10.1016/j.ijsolstr.2016.08.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1937409011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768316302372</els_id><sourcerecordid>1937409011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-9b1b5d5831721d2999c7892c7b562eee07e91732ca1eac7fa2de31b0d1dfbb7a3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BSl4bp1Juk3jaRfxz8KCFz2HNJlCym5Tk67gt7dL9ezp8eC9N8yPsVuEAgGr-67wXQr7NMaCT76AugBenrEF1lLlHMvqnC0AOOSyqsUlu0qpA4BSKFiw9ab3KYwxDN5mtDdp9DYfZs0ctSEezOhDn4U2G8xA8SHb9qdAT9khONpfs4vW7BPd_OqSfTw_vT--5ru3l-3jZpdbUcKYqwablVvVAiVHx5VSVtaKW9msKk5EIEmhFNwaJGNla7gjgQ04dG3TSCOW7G7eHWL4PFIadReOsZ9OalRClqAAcUpVc8rGkFKkVg_RH0z81gj6REt3-o-WPtHSUOuJ1lRcz0WafvjyFHWynnpLzkeyo3bB_zfxAz2wdyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937409011</pqid></control><display><type>article</type><title>Anisotropic elastic-plastic deformation of paper: In-plane model</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Li, Yujun ; Stapleton, Scott Edward ; Reese, Stefanie ; Simon, Jaan-Willem</creator><creatorcontrib>Li, Yujun ; Stapleton, Scott Edward ; Reese, Stefanie ; Simon, Jaan-Willem</creatorcontrib><description>Laminated paperboard and paper is widely used in packaging products. It generally exhibits highly anisotropic and nonlinear mechanical behavior. The aim of this study is to describe the in-plane material behavior with an orthotropic elastic-plastic model based on the observed experimental behavior. A structural tensor-based approach was applied to model the elastic deformation, while a multi-surface based yield criterion was adopted to describe the yield behavior. The model incorporated nonlinear kinematic and isotropic hardening to capture the anisotropic hardening effect. In the experiment, the compressive yield stress was found to be insensitive to the previous tensile deformation. The proposed model could capture this compression yield stress preserving effect under reverse loading, which in turn reduced the required material parameters as expected. With the material parameters calibrated from a set of simple uniaxial tests in various directions, the model was shown to predict the stress-strain behavior for other orientations satisfactorily. The model was further validated with experiments under complex loading conditions and found to capture the highly anisotropic, elastic-plastic behavior accurately.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2016.08.024</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Anisotropic hardening ; Anisotropy ; Compressive properties ; Deformation ; Elastic anisotropy ; Elastic deformation ; Elastic-plastic ; Hardening ; Mathematical models ; Mechanical properties ; Paper board ; Paperboard ; Plastic deformation ; Reverse loading ; Stress-strain curves ; Structural tensor ; Tensile deformation ; Uniaxial tests ; Yield criteria ; Yield strength ; Yield stress ; Yield surface</subject><ispartof>International journal of solids and structures, 2016-12, Vol.100-101, p.286-296</ispartof><rights>2016</rights><rights>Copyright Elsevier BV Dec 1, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-9b1b5d5831721d2999c7892c7b562eee07e91732ca1eac7fa2de31b0d1dfbb7a3</citedby><cites>FETCH-LOGICAL-c340t-9b1b5d5831721d2999c7892c7b562eee07e91732ca1eac7fa2de31b0d1dfbb7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Yujun</creatorcontrib><creatorcontrib>Stapleton, Scott Edward</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Simon, Jaan-Willem</creatorcontrib><title>Anisotropic elastic-plastic deformation of paper: In-plane model</title><title>International journal of solids and structures</title><description>Laminated paperboard and paper is widely used in packaging products. It generally exhibits highly anisotropic and nonlinear mechanical behavior. The aim of this study is to describe the in-plane material behavior with an orthotropic elastic-plastic model based on the observed experimental behavior. A structural tensor-based approach was applied to model the elastic deformation, while a multi-surface based yield criterion was adopted to describe the yield behavior. The model incorporated nonlinear kinematic and isotropic hardening to capture the anisotropic hardening effect. In the experiment, the compressive yield stress was found to be insensitive to the previous tensile deformation. The proposed model could capture this compression yield stress preserving effect under reverse loading, which in turn reduced the required material parameters as expected. With the material parameters calibrated from a set of simple uniaxial tests in various directions, the model was shown to predict the stress-strain behavior for other orientations satisfactorily. The model was further validated with experiments under complex loading conditions and found to capture the highly anisotropic, elastic-plastic behavior accurately.</description><subject>Anisotropic hardening</subject><subject>Anisotropy</subject><subject>Compressive properties</subject><subject>Deformation</subject><subject>Elastic anisotropy</subject><subject>Elastic deformation</subject><subject>Elastic-plastic</subject><subject>Hardening</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Paper board</subject><subject>Paperboard</subject><subject>Plastic deformation</subject><subject>Reverse loading</subject><subject>Stress-strain curves</subject><subject>Structural tensor</subject><subject>Tensile deformation</subject><subject>Uniaxial tests</subject><subject>Yield criteria</subject><subject>Yield strength</subject><subject>Yield stress</subject><subject>Yield surface</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BSl4bp1Juk3jaRfxz8KCFz2HNJlCym5Tk67gt7dL9ezp8eC9N8yPsVuEAgGr-67wXQr7NMaCT76AugBenrEF1lLlHMvqnC0AOOSyqsUlu0qpA4BSKFiw9ab3KYwxDN5mtDdp9DYfZs0ctSEezOhDn4U2G8xA8SHb9qdAT9khONpfs4vW7BPd_OqSfTw_vT--5ru3l-3jZpdbUcKYqwablVvVAiVHx5VSVtaKW9msKk5EIEmhFNwaJGNla7gjgQ04dG3TSCOW7G7eHWL4PFIadReOsZ9OalRClqAAcUpVc8rGkFKkVg_RH0z81gj6REt3-o-WPtHSUOuJ1lRcz0WafvjyFHWynnpLzkeyo3bB_zfxAz2wdyo</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Li, Yujun</creator><creator>Stapleton, Scott Edward</creator><creator>Reese, Stefanie</creator><creator>Simon, Jaan-Willem</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20161201</creationdate><title>Anisotropic elastic-plastic deformation of paper: In-plane model</title><author>Li, Yujun ; Stapleton, Scott Edward ; Reese, Stefanie ; Simon, Jaan-Willem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-9b1b5d5831721d2999c7892c7b562eee07e91732ca1eac7fa2de31b0d1dfbb7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropic hardening</topic><topic>Anisotropy</topic><topic>Compressive properties</topic><topic>Deformation</topic><topic>Elastic anisotropy</topic><topic>Elastic deformation</topic><topic>Elastic-plastic</topic><topic>Hardening</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Paper board</topic><topic>Paperboard</topic><topic>Plastic deformation</topic><topic>Reverse loading</topic><topic>Stress-strain curves</topic><topic>Structural tensor</topic><topic>Tensile deformation</topic><topic>Uniaxial tests</topic><topic>Yield criteria</topic><topic>Yield strength</topic><topic>Yield stress</topic><topic>Yield surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yujun</creatorcontrib><creatorcontrib>Stapleton, Scott Edward</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Simon, Jaan-Willem</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yujun</au><au>Stapleton, Scott Edward</au><au>Reese, Stefanie</au><au>Simon, Jaan-Willem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic elastic-plastic deformation of paper: In-plane model</atitle><jtitle>International journal of solids and structures</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>100-101</volume><spage>286</spage><epage>296</epage><pages>286-296</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>Laminated paperboard and paper is widely used in packaging products. It generally exhibits highly anisotropic and nonlinear mechanical behavior. The aim of this study is to describe the in-plane material behavior with an orthotropic elastic-plastic model based on the observed experimental behavior. A structural tensor-based approach was applied to model the elastic deformation, while a multi-surface based yield criterion was adopted to describe the yield behavior. The model incorporated nonlinear kinematic and isotropic hardening to capture the anisotropic hardening effect. In the experiment, the compressive yield stress was found to be insensitive to the previous tensile deformation. The proposed model could capture this compression yield stress preserving effect under reverse loading, which in turn reduced the required material parameters as expected. With the material parameters calibrated from a set of simple uniaxial tests in various directions, the model was shown to predict the stress-strain behavior for other orientations satisfactorily. The model was further validated with experiments under complex loading conditions and found to capture the highly anisotropic, elastic-plastic behavior accurately.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2016.08.024</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2016-12, Vol.100-101, p.286-296
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_journals_1937409011
source ScienceDirect Freedom Collection 2022-2024
subjects Anisotropic hardening
Anisotropy
Compressive properties
Deformation
Elastic anisotropy
Elastic deformation
Elastic-plastic
Hardening
Mathematical models
Mechanical properties
Paper board
Paperboard
Plastic deformation
Reverse loading
Stress-strain curves
Structural tensor
Tensile deformation
Uniaxial tests
Yield criteria
Yield strength
Yield stress
Yield surface
title Anisotropic elastic-plastic deformation of paper: In-plane model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20elastic-plastic%20deformation%20of%20paper:%20In-plane%20model&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Li,%20Yujun&rft.date=2016-12-01&rft.volume=100-101&rft.spage=286&rft.epage=296&rft.pages=286-296&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2016.08.024&rft_dat=%3Cproquest_cross%3E1937409011%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-9b1b5d5831721d2999c7892c7b562eee07e91732ca1eac7fa2de31b0d1dfbb7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1937409011&rft_id=info:pmid/&rfr_iscdi=true