Loading…

Thermal fiber orientation tensors for digital paper physics

We estimate the orientation of wood fibers in porous networks like paper, paperboard or fiberboard by computing digital thermal conductivity experiments on micro-computed tomography (μCT) images with artificial isotropic thermal conductivity parameters. The accuracy of mechanical and thermal constit...

Full description

Saved in:
Bibliographic Details
Published in:International journal of solids and structures 2016-12, Vol.100-101, p.234-244
Main Authors: Schneider, Matti, Kabel, Matthias, Andrä, Heiko, Lenske, Alexander, Hauptmann, Marek, Majschak, Jens-Peter, Penter, Lars, Hardtmann, André, Ihlenfeldt, Steffen, Westerteiger, Rolf, Glatt, Erik, Wiegmann, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33
cites cdi_FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33
container_end_page 244
container_issue
container_start_page 234
container_title International journal of solids and structures
container_volume 100-101
creator Schneider, Matti
Kabel, Matthias
Andrä, Heiko
Lenske, Alexander
Hauptmann, Marek
Majschak, Jens-Peter
Penter, Lars
Hardtmann, André
Ihlenfeldt, Steffen
Westerteiger, Rolf
Glatt, Erik
Wiegmann, Andreas
description We estimate the orientation of wood fibers in porous networks like paper, paperboard or fiberboard by computing digital thermal conductivity experiments on micro-computed tomography (μCT) images with artificial isotropic thermal conductivity parameters. The accuracy of mechanical and thermal constitutive models for porous wood fiber based materials crucially depends on knowing the wood fiber orientation. Unfortunately, due to the high porosity, the micro-heterogeneity of wood fibers, the high carbon content of organic materials and the unknown additives present in industrial paper, μCT-scans often exhibit low contrast and strong artifacts. Conventional image processing approaches encounter difficulties, as they rely upon convex fiber cross sections. We propose a solution by circumventing the segmentation of single wood fibers in μCT images, by performing thermal conductivity simulations on binarized wood fiber structures, where an artificial isotropic thermal conductivity is associated to the fibers and the pore space is considered as isolating. The local and global temperature fluxes are assembled into a fiber orientation tensor. This method overcomes the limitations of the mentioned local image processing approaches, as individual fibers need not be resolved and convergence for increasing resolution is a consequence of abstract mathematical theory. We use our novel method to analyze large three-dimensional μCT-scans and a synchrotron scan of a paperboard sample, serving as the starting point of an accurate micromechanical modeling of the effective anisotropic mechanical behavior of paper and paperboard. These results are crucial for calculating the mechanical strength of deep-drawn paperboard, which will be accomplished in a subsequent article.
doi_str_mv 10.1016/j.ijsolstr.2016.08.020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1937410233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768316302335</els_id><sourcerecordid>1937410233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOKdfQQo-t94lbZLiizKcCgNf5nNo09SlbE1NMmHf3ozps0_HHb__Hfcj5BahQEB-PxR2CG4boi9o6guQBVA4IzOUos4plvyczCCNcsEluyRXIQwAULIaZuRhvTF-12yz3rbGZ85bM8YmWjdm0YzB-ZD1zmed_bQxUVMzJWraHILV4Zpc9M02mJvfOicfy-f14jVfvb-8LZ5WuWZSxrxvOW0rzTmUPe8RNAJHLWktATvDQYiqhYqjqKpOcFbLSlLgFGukZYWasTm5O-2dvPvamxDV4PZ-TCcV1kyUCJQdKX6itHcheNOrydtd4w8KQR1FqUH9iVJHUQqkSlZS8PEUNOmHb2u8CjpZ0Kaz3uioOmf_W_EDPWNzIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937410233</pqid></control><display><type>article</type><title>Thermal fiber orientation tensors for digital paper physics</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Schneider, Matti ; Kabel, Matthias ; Andrä, Heiko ; Lenske, Alexander ; Hauptmann, Marek ; Majschak, Jens-Peter ; Penter, Lars ; Hardtmann, André ; Ihlenfeldt, Steffen ; Westerteiger, Rolf ; Glatt, Erik ; Wiegmann, Andreas</creator><creatorcontrib>Schneider, Matti ; Kabel, Matthias ; Andrä, Heiko ; Lenske, Alexander ; Hauptmann, Marek ; Majschak, Jens-Peter ; Penter, Lars ; Hardtmann, André ; Ihlenfeldt, Steffen ; Westerteiger, Rolf ; Glatt, Erik ; Wiegmann, Andreas</creatorcontrib><description>We estimate the orientation of wood fibers in porous networks like paper, paperboard or fiberboard by computing digital thermal conductivity experiments on micro-computed tomography (μCT) images with artificial isotropic thermal conductivity parameters. The accuracy of mechanical and thermal constitutive models for porous wood fiber based materials crucially depends on knowing the wood fiber orientation. Unfortunately, due to the high porosity, the micro-heterogeneity of wood fibers, the high carbon content of organic materials and the unknown additives present in industrial paper, μCT-scans often exhibit low contrast and strong artifacts. Conventional image processing approaches encounter difficulties, as they rely upon convex fiber cross sections. We propose a solution by circumventing the segmentation of single wood fibers in μCT images, by performing thermal conductivity simulations on binarized wood fiber structures, where an artificial isotropic thermal conductivity is associated to the fibers and the pore space is considered as isolating. The local and global temperature fluxes are assembled into a fiber orientation tensor. This method overcomes the limitations of the mentioned local image processing approaches, as individual fibers need not be resolved and convergence for increasing resolution is a consequence of abstract mathematical theory. We use our novel method to analyze large three-dimensional μCT-scans and a synchrotron scan of a paperboard sample, serving as the starting point of an accurate micromechanical modeling of the effective anisotropic mechanical behavior of paper and paperboard. These results are crucial for calculating the mechanical strength of deep-drawn paperboard, which will be accomplished in a subsequent article.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2016.08.020</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Additives ; Anisotropic ; Anisotropy ; Carbon content ; Computed tomography ; Computer simulation ; Conductivity ; Constitutive models ; Cross-sections ; Deep drawing ; Digital imaging ; Experiments ; Fiber orientation ; Fluxes ; Heat transfer ; Image contrast ; Image processing ; Mathematical models ; Mechanical properties ; Microstructural ; Microstructure ; Organic materials ; Paper board ; Paper mechanics ; Paperboard ; Porosity ; Porous materials ; Porous media ; Tensors ; Thermal conductivity</subject><ispartof>International journal of solids and structures, 2016-12, Vol.100-101, p.234-244</ispartof><rights>2016</rights><rights>Copyright Elsevier BV Dec 1, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33</citedby><cites>FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Schneider, Matti</creatorcontrib><creatorcontrib>Kabel, Matthias</creatorcontrib><creatorcontrib>Andrä, Heiko</creatorcontrib><creatorcontrib>Lenske, Alexander</creatorcontrib><creatorcontrib>Hauptmann, Marek</creatorcontrib><creatorcontrib>Majschak, Jens-Peter</creatorcontrib><creatorcontrib>Penter, Lars</creatorcontrib><creatorcontrib>Hardtmann, André</creatorcontrib><creatorcontrib>Ihlenfeldt, Steffen</creatorcontrib><creatorcontrib>Westerteiger, Rolf</creatorcontrib><creatorcontrib>Glatt, Erik</creatorcontrib><creatorcontrib>Wiegmann, Andreas</creatorcontrib><title>Thermal fiber orientation tensors for digital paper physics</title><title>International journal of solids and structures</title><description>We estimate the orientation of wood fibers in porous networks like paper, paperboard or fiberboard by computing digital thermal conductivity experiments on micro-computed tomography (μCT) images with artificial isotropic thermal conductivity parameters. The accuracy of mechanical and thermal constitutive models for porous wood fiber based materials crucially depends on knowing the wood fiber orientation. Unfortunately, due to the high porosity, the micro-heterogeneity of wood fibers, the high carbon content of organic materials and the unknown additives present in industrial paper, μCT-scans often exhibit low contrast and strong artifacts. Conventional image processing approaches encounter difficulties, as they rely upon convex fiber cross sections. We propose a solution by circumventing the segmentation of single wood fibers in μCT images, by performing thermal conductivity simulations on binarized wood fiber structures, where an artificial isotropic thermal conductivity is associated to the fibers and the pore space is considered as isolating. The local and global temperature fluxes are assembled into a fiber orientation tensor. This method overcomes the limitations of the mentioned local image processing approaches, as individual fibers need not be resolved and convergence for increasing resolution is a consequence of abstract mathematical theory. We use our novel method to analyze large three-dimensional μCT-scans and a synchrotron scan of a paperboard sample, serving as the starting point of an accurate micromechanical modeling of the effective anisotropic mechanical behavior of paper and paperboard. These results are crucial for calculating the mechanical strength of deep-drawn paperboard, which will be accomplished in a subsequent article.</description><subject>Additives</subject><subject>Anisotropic</subject><subject>Anisotropy</subject><subject>Carbon content</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Constitutive models</subject><subject>Cross-sections</subject><subject>Deep drawing</subject><subject>Digital imaging</subject><subject>Experiments</subject><subject>Fiber orientation</subject><subject>Fluxes</subject><subject>Heat transfer</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microstructural</subject><subject>Microstructure</subject><subject>Organic materials</subject><subject>Paper board</subject><subject>Paper mechanics</subject><subject>Paperboard</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Tensors</subject><subject>Thermal conductivity</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAQx4MoOKdfQQo-t94lbZLiizKcCgNf5nNo09SlbE1NMmHf3ozps0_HHb__Hfcj5BahQEB-PxR2CG4boi9o6guQBVA4IzOUos4plvyczCCNcsEluyRXIQwAULIaZuRhvTF-12yz3rbGZ85bM8YmWjdm0YzB-ZD1zmed_bQxUVMzJWraHILV4Zpc9M02mJvfOicfy-f14jVfvb-8LZ5WuWZSxrxvOW0rzTmUPe8RNAJHLWktATvDQYiqhYqjqKpOcFbLSlLgFGukZYWasTm5O-2dvPvamxDV4PZ-TCcV1kyUCJQdKX6itHcheNOrydtd4w8KQR1FqUH9iVJHUQqkSlZS8PEUNOmHb2u8CjpZ0Kaz3uioOmf_W_EDPWNzIA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Schneider, Matti</creator><creator>Kabel, Matthias</creator><creator>Andrä, Heiko</creator><creator>Lenske, Alexander</creator><creator>Hauptmann, Marek</creator><creator>Majschak, Jens-Peter</creator><creator>Penter, Lars</creator><creator>Hardtmann, André</creator><creator>Ihlenfeldt, Steffen</creator><creator>Westerteiger, Rolf</creator><creator>Glatt, Erik</creator><creator>Wiegmann, Andreas</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20161201</creationdate><title>Thermal fiber orientation tensors for digital paper physics</title><author>Schneider, Matti ; Kabel, Matthias ; Andrä, Heiko ; Lenske, Alexander ; Hauptmann, Marek ; Majschak, Jens-Peter ; Penter, Lars ; Hardtmann, André ; Ihlenfeldt, Steffen ; Westerteiger, Rolf ; Glatt, Erik ; Wiegmann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Additives</topic><topic>Anisotropic</topic><topic>Anisotropy</topic><topic>Carbon content</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Constitutive models</topic><topic>Cross-sections</topic><topic>Deep drawing</topic><topic>Digital imaging</topic><topic>Experiments</topic><topic>Fiber orientation</topic><topic>Fluxes</topic><topic>Heat transfer</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microstructural</topic><topic>Microstructure</topic><topic>Organic materials</topic><topic>Paper board</topic><topic>Paper mechanics</topic><topic>Paperboard</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Tensors</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Matti</creatorcontrib><creatorcontrib>Kabel, Matthias</creatorcontrib><creatorcontrib>Andrä, Heiko</creatorcontrib><creatorcontrib>Lenske, Alexander</creatorcontrib><creatorcontrib>Hauptmann, Marek</creatorcontrib><creatorcontrib>Majschak, Jens-Peter</creatorcontrib><creatorcontrib>Penter, Lars</creatorcontrib><creatorcontrib>Hardtmann, André</creatorcontrib><creatorcontrib>Ihlenfeldt, Steffen</creatorcontrib><creatorcontrib>Westerteiger, Rolf</creatorcontrib><creatorcontrib>Glatt, Erik</creatorcontrib><creatorcontrib>Wiegmann, Andreas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Matti</au><au>Kabel, Matthias</au><au>Andrä, Heiko</au><au>Lenske, Alexander</au><au>Hauptmann, Marek</au><au>Majschak, Jens-Peter</au><au>Penter, Lars</au><au>Hardtmann, André</au><au>Ihlenfeldt, Steffen</au><au>Westerteiger, Rolf</au><au>Glatt, Erik</au><au>Wiegmann, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal fiber orientation tensors for digital paper physics</atitle><jtitle>International journal of solids and structures</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>100-101</volume><spage>234</spage><epage>244</epage><pages>234-244</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>We estimate the orientation of wood fibers in porous networks like paper, paperboard or fiberboard by computing digital thermal conductivity experiments on micro-computed tomography (μCT) images with artificial isotropic thermal conductivity parameters. The accuracy of mechanical and thermal constitutive models for porous wood fiber based materials crucially depends on knowing the wood fiber orientation. Unfortunately, due to the high porosity, the micro-heterogeneity of wood fibers, the high carbon content of organic materials and the unknown additives present in industrial paper, μCT-scans often exhibit low contrast and strong artifacts. Conventional image processing approaches encounter difficulties, as they rely upon convex fiber cross sections. We propose a solution by circumventing the segmentation of single wood fibers in μCT images, by performing thermal conductivity simulations on binarized wood fiber structures, where an artificial isotropic thermal conductivity is associated to the fibers and the pore space is considered as isolating. The local and global temperature fluxes are assembled into a fiber orientation tensor. This method overcomes the limitations of the mentioned local image processing approaches, as individual fibers need not be resolved and convergence for increasing resolution is a consequence of abstract mathematical theory. We use our novel method to analyze large three-dimensional μCT-scans and a synchrotron scan of a paperboard sample, serving as the starting point of an accurate micromechanical modeling of the effective anisotropic mechanical behavior of paper and paperboard. These results are crucial for calculating the mechanical strength of deep-drawn paperboard, which will be accomplished in a subsequent article.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2016.08.020</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2016-12, Vol.100-101, p.234-244
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_journals_1937410233
source ScienceDirect Freedom Collection 2022-2024
subjects Additives
Anisotropic
Anisotropy
Carbon content
Computed tomography
Computer simulation
Conductivity
Constitutive models
Cross-sections
Deep drawing
Digital imaging
Experiments
Fiber orientation
Fluxes
Heat transfer
Image contrast
Image processing
Mathematical models
Mechanical properties
Microstructural
Microstructure
Organic materials
Paper board
Paper mechanics
Paperboard
Porosity
Porous materials
Porous media
Tensors
Thermal conductivity
title Thermal fiber orientation tensors for digital paper physics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20fiber%20orientation%20tensors%20for%20digital%20paper%20physics&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Schneider,%20Matti&rft.date=2016-12-01&rft.volume=100-101&rft.spage=234&rft.epage=244&rft.pages=234-244&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2016.08.020&rft_dat=%3Cproquest_cross%3E1937410233%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1937410233&rft_id=info:pmid/&rfr_iscdi=true