Loading…
Thermal fiber orientation tensors for digital paper physics
We estimate the orientation of wood fibers in porous networks like paper, paperboard or fiberboard by computing digital thermal conductivity experiments on micro-computed tomography (μCT) images with artificial isotropic thermal conductivity parameters. The accuracy of mechanical and thermal constit...
Saved in:
Published in: | International journal of solids and structures 2016-12, Vol.100-101, p.234-244 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33 |
container_end_page | 244 |
container_issue | |
container_start_page | 234 |
container_title | International journal of solids and structures |
container_volume | 100-101 |
creator | Schneider, Matti Kabel, Matthias Andrä, Heiko Lenske, Alexander Hauptmann, Marek Majschak, Jens-Peter Penter, Lars Hardtmann, André Ihlenfeldt, Steffen Westerteiger, Rolf Glatt, Erik Wiegmann, Andreas |
description | We estimate the orientation of wood fibers in porous networks like paper, paperboard or fiberboard by computing digital thermal conductivity experiments on micro-computed tomography (μCT) images with artificial isotropic thermal conductivity parameters.
The accuracy of mechanical and thermal constitutive models for porous wood fiber based materials crucially depends on knowing the wood fiber orientation. Unfortunately, due to the high porosity, the micro-heterogeneity of wood fibers, the high carbon content of organic materials and the unknown additives present in industrial paper, μCT-scans often exhibit low contrast and strong artifacts. Conventional image processing approaches encounter difficulties, as they rely upon convex fiber cross sections.
We propose a solution by circumventing the segmentation of single wood fibers in μCT images, by performing thermal conductivity simulations on binarized wood fiber structures, where an artificial isotropic thermal conductivity is associated to the fibers and the pore space is considered as isolating. The local and global temperature fluxes are assembled into a fiber orientation tensor. This method overcomes the limitations of the mentioned local image processing approaches, as individual fibers need not be resolved and convergence for increasing resolution is a consequence of abstract mathematical theory.
We use our novel method to analyze large three-dimensional μCT-scans and a synchrotron scan of a paperboard sample, serving as the starting point of an accurate micromechanical modeling of the effective anisotropic mechanical behavior of paper and paperboard. These results are crucial for calculating the mechanical strength of deep-drawn paperboard, which will be accomplished in a subsequent article. |
doi_str_mv | 10.1016/j.ijsolstr.2016.08.020 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1937410233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768316302335</els_id><sourcerecordid>1937410233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOKdfQQo-t94lbZLiizKcCgNf5nNo09SlbE1NMmHf3ozps0_HHb__Hfcj5BahQEB-PxR2CG4boi9o6guQBVA4IzOUos4plvyczCCNcsEluyRXIQwAULIaZuRhvTF-12yz3rbGZ85bM8YmWjdm0YzB-ZD1zmed_bQxUVMzJWraHILV4Zpc9M02mJvfOicfy-f14jVfvb-8LZ5WuWZSxrxvOW0rzTmUPe8RNAJHLWktATvDQYiqhYqjqKpOcFbLSlLgFGukZYWasTm5O-2dvPvamxDV4PZ-TCcV1kyUCJQdKX6itHcheNOrydtd4w8KQR1FqUH9iVJHUQqkSlZS8PEUNOmHb2u8CjpZ0Kaz3uioOmf_W_EDPWNzIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937410233</pqid></control><display><type>article</type><title>Thermal fiber orientation tensors for digital paper physics</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Schneider, Matti ; Kabel, Matthias ; Andrä, Heiko ; Lenske, Alexander ; Hauptmann, Marek ; Majschak, Jens-Peter ; Penter, Lars ; Hardtmann, André ; Ihlenfeldt, Steffen ; Westerteiger, Rolf ; Glatt, Erik ; Wiegmann, Andreas</creator><creatorcontrib>Schneider, Matti ; Kabel, Matthias ; Andrä, Heiko ; Lenske, Alexander ; Hauptmann, Marek ; Majschak, Jens-Peter ; Penter, Lars ; Hardtmann, André ; Ihlenfeldt, Steffen ; Westerteiger, Rolf ; Glatt, Erik ; Wiegmann, Andreas</creatorcontrib><description>We estimate the orientation of wood fibers in porous networks like paper, paperboard or fiberboard by computing digital thermal conductivity experiments on micro-computed tomography (μCT) images with artificial isotropic thermal conductivity parameters.
The accuracy of mechanical and thermal constitutive models for porous wood fiber based materials crucially depends on knowing the wood fiber orientation. Unfortunately, due to the high porosity, the micro-heterogeneity of wood fibers, the high carbon content of organic materials and the unknown additives present in industrial paper, μCT-scans often exhibit low contrast and strong artifacts. Conventional image processing approaches encounter difficulties, as they rely upon convex fiber cross sections.
We propose a solution by circumventing the segmentation of single wood fibers in μCT images, by performing thermal conductivity simulations on binarized wood fiber structures, where an artificial isotropic thermal conductivity is associated to the fibers and the pore space is considered as isolating. The local and global temperature fluxes are assembled into a fiber orientation tensor. This method overcomes the limitations of the mentioned local image processing approaches, as individual fibers need not be resolved and convergence for increasing resolution is a consequence of abstract mathematical theory.
We use our novel method to analyze large three-dimensional μCT-scans and a synchrotron scan of a paperboard sample, serving as the starting point of an accurate micromechanical modeling of the effective anisotropic mechanical behavior of paper and paperboard. These results are crucial for calculating the mechanical strength of deep-drawn paperboard, which will be accomplished in a subsequent article.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2016.08.020</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Additives ; Anisotropic ; Anisotropy ; Carbon content ; Computed tomography ; Computer simulation ; Conductivity ; Constitutive models ; Cross-sections ; Deep drawing ; Digital imaging ; Experiments ; Fiber orientation ; Fluxes ; Heat transfer ; Image contrast ; Image processing ; Mathematical models ; Mechanical properties ; Microstructural ; Microstructure ; Organic materials ; Paper board ; Paper mechanics ; Paperboard ; Porosity ; Porous materials ; Porous media ; Tensors ; Thermal conductivity</subject><ispartof>International journal of solids and structures, 2016-12, Vol.100-101, p.234-244</ispartof><rights>2016</rights><rights>Copyright Elsevier BV Dec 1, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33</citedby><cites>FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Schneider, Matti</creatorcontrib><creatorcontrib>Kabel, Matthias</creatorcontrib><creatorcontrib>Andrä, Heiko</creatorcontrib><creatorcontrib>Lenske, Alexander</creatorcontrib><creatorcontrib>Hauptmann, Marek</creatorcontrib><creatorcontrib>Majschak, Jens-Peter</creatorcontrib><creatorcontrib>Penter, Lars</creatorcontrib><creatorcontrib>Hardtmann, André</creatorcontrib><creatorcontrib>Ihlenfeldt, Steffen</creatorcontrib><creatorcontrib>Westerteiger, Rolf</creatorcontrib><creatorcontrib>Glatt, Erik</creatorcontrib><creatorcontrib>Wiegmann, Andreas</creatorcontrib><title>Thermal fiber orientation tensors for digital paper physics</title><title>International journal of solids and structures</title><description>We estimate the orientation of wood fibers in porous networks like paper, paperboard or fiberboard by computing digital thermal conductivity experiments on micro-computed tomography (μCT) images with artificial isotropic thermal conductivity parameters.
The accuracy of mechanical and thermal constitutive models for porous wood fiber based materials crucially depends on knowing the wood fiber orientation. Unfortunately, due to the high porosity, the micro-heterogeneity of wood fibers, the high carbon content of organic materials and the unknown additives present in industrial paper, μCT-scans often exhibit low contrast and strong artifacts. Conventional image processing approaches encounter difficulties, as they rely upon convex fiber cross sections.
We propose a solution by circumventing the segmentation of single wood fibers in μCT images, by performing thermal conductivity simulations on binarized wood fiber structures, where an artificial isotropic thermal conductivity is associated to the fibers and the pore space is considered as isolating. The local and global temperature fluxes are assembled into a fiber orientation tensor. This method overcomes the limitations of the mentioned local image processing approaches, as individual fibers need not be resolved and convergence for increasing resolution is a consequence of abstract mathematical theory.
We use our novel method to analyze large three-dimensional μCT-scans and a synchrotron scan of a paperboard sample, serving as the starting point of an accurate micromechanical modeling of the effective anisotropic mechanical behavior of paper and paperboard. These results are crucial for calculating the mechanical strength of deep-drawn paperboard, which will be accomplished in a subsequent article.</description><subject>Additives</subject><subject>Anisotropic</subject><subject>Anisotropy</subject><subject>Carbon content</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Constitutive models</subject><subject>Cross-sections</subject><subject>Deep drawing</subject><subject>Digital imaging</subject><subject>Experiments</subject><subject>Fiber orientation</subject><subject>Fluxes</subject><subject>Heat transfer</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microstructural</subject><subject>Microstructure</subject><subject>Organic materials</subject><subject>Paper board</subject><subject>Paper mechanics</subject><subject>Paperboard</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Tensors</subject><subject>Thermal conductivity</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAQx4MoOKdfQQo-t94lbZLiizKcCgNf5nNo09SlbE1NMmHf3ozps0_HHb__Hfcj5BahQEB-PxR2CG4boi9o6guQBVA4IzOUos4plvyczCCNcsEluyRXIQwAULIaZuRhvTF-12yz3rbGZ85bM8YmWjdm0YzB-ZD1zmed_bQxUVMzJWraHILV4Zpc9M02mJvfOicfy-f14jVfvb-8LZ5WuWZSxrxvOW0rzTmUPe8RNAJHLWktATvDQYiqhYqjqKpOcFbLSlLgFGukZYWasTm5O-2dvPvamxDV4PZ-TCcV1kyUCJQdKX6itHcheNOrydtd4w8KQR1FqUH9iVJHUQqkSlZS8PEUNOmHb2u8CjpZ0Kaz3uioOmf_W_EDPWNzIA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Schneider, Matti</creator><creator>Kabel, Matthias</creator><creator>Andrä, Heiko</creator><creator>Lenske, Alexander</creator><creator>Hauptmann, Marek</creator><creator>Majschak, Jens-Peter</creator><creator>Penter, Lars</creator><creator>Hardtmann, André</creator><creator>Ihlenfeldt, Steffen</creator><creator>Westerteiger, Rolf</creator><creator>Glatt, Erik</creator><creator>Wiegmann, Andreas</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20161201</creationdate><title>Thermal fiber orientation tensors for digital paper physics</title><author>Schneider, Matti ; Kabel, Matthias ; Andrä, Heiko ; Lenske, Alexander ; Hauptmann, Marek ; Majschak, Jens-Peter ; Penter, Lars ; Hardtmann, André ; Ihlenfeldt, Steffen ; Westerteiger, Rolf ; Glatt, Erik ; Wiegmann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Additives</topic><topic>Anisotropic</topic><topic>Anisotropy</topic><topic>Carbon content</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Constitutive models</topic><topic>Cross-sections</topic><topic>Deep drawing</topic><topic>Digital imaging</topic><topic>Experiments</topic><topic>Fiber orientation</topic><topic>Fluxes</topic><topic>Heat transfer</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microstructural</topic><topic>Microstructure</topic><topic>Organic materials</topic><topic>Paper board</topic><topic>Paper mechanics</topic><topic>Paperboard</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Tensors</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Matti</creatorcontrib><creatorcontrib>Kabel, Matthias</creatorcontrib><creatorcontrib>Andrä, Heiko</creatorcontrib><creatorcontrib>Lenske, Alexander</creatorcontrib><creatorcontrib>Hauptmann, Marek</creatorcontrib><creatorcontrib>Majschak, Jens-Peter</creatorcontrib><creatorcontrib>Penter, Lars</creatorcontrib><creatorcontrib>Hardtmann, André</creatorcontrib><creatorcontrib>Ihlenfeldt, Steffen</creatorcontrib><creatorcontrib>Westerteiger, Rolf</creatorcontrib><creatorcontrib>Glatt, Erik</creatorcontrib><creatorcontrib>Wiegmann, Andreas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Matti</au><au>Kabel, Matthias</au><au>Andrä, Heiko</au><au>Lenske, Alexander</au><au>Hauptmann, Marek</au><au>Majschak, Jens-Peter</au><au>Penter, Lars</au><au>Hardtmann, André</au><au>Ihlenfeldt, Steffen</au><au>Westerteiger, Rolf</au><au>Glatt, Erik</au><au>Wiegmann, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal fiber orientation tensors for digital paper physics</atitle><jtitle>International journal of solids and structures</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>100-101</volume><spage>234</spage><epage>244</epage><pages>234-244</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>We estimate the orientation of wood fibers in porous networks like paper, paperboard or fiberboard by computing digital thermal conductivity experiments on micro-computed tomography (μCT) images with artificial isotropic thermal conductivity parameters.
The accuracy of mechanical and thermal constitutive models for porous wood fiber based materials crucially depends on knowing the wood fiber orientation. Unfortunately, due to the high porosity, the micro-heterogeneity of wood fibers, the high carbon content of organic materials and the unknown additives present in industrial paper, μCT-scans often exhibit low contrast and strong artifacts. Conventional image processing approaches encounter difficulties, as they rely upon convex fiber cross sections.
We propose a solution by circumventing the segmentation of single wood fibers in μCT images, by performing thermal conductivity simulations on binarized wood fiber structures, where an artificial isotropic thermal conductivity is associated to the fibers and the pore space is considered as isolating. The local and global temperature fluxes are assembled into a fiber orientation tensor. This method overcomes the limitations of the mentioned local image processing approaches, as individual fibers need not be resolved and convergence for increasing resolution is a consequence of abstract mathematical theory.
We use our novel method to analyze large three-dimensional μCT-scans and a synchrotron scan of a paperboard sample, serving as the starting point of an accurate micromechanical modeling of the effective anisotropic mechanical behavior of paper and paperboard. These results are crucial for calculating the mechanical strength of deep-drawn paperboard, which will be accomplished in a subsequent article.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2016.08.020</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2016-12, Vol.100-101, p.234-244 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_journals_1937410233 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Additives Anisotropic Anisotropy Carbon content Computed tomography Computer simulation Conductivity Constitutive models Cross-sections Deep drawing Digital imaging Experiments Fiber orientation Fluxes Heat transfer Image contrast Image processing Mathematical models Mechanical properties Microstructural Microstructure Organic materials Paper board Paper mechanics Paperboard Porosity Porous materials Porous media Tensors Thermal conductivity |
title | Thermal fiber orientation tensors for digital paper physics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20fiber%20orientation%20tensors%20for%20digital%20paper%20physics&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Schneider,%20Matti&rft.date=2016-12-01&rft.volume=100-101&rft.spage=234&rft.epage=244&rft.pages=234-244&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2016.08.020&rft_dat=%3Cproquest_cross%3E1937410233%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-fb62b5c6604f6f10c1061c829801de60775b0561755d763985820621912451c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1937410233&rft_id=info:pmid/&rfr_iscdi=true |