Loading…

A numerical kinematic model of welding process for low carbon steels

•Predicting microstructure development of welding low carbon steels.•Microstructural model integrated into finite element package ABAQUS.•Prediction of volume fractions of each micro-constituents.•Proposed model forecasted the transformation products during and after welding. A numerical metallurgic...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2017-07, Vol.186, p.35-49
Main Authors: Ni, Junyan, Abdel Wahab, Magd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-46d7e3ccb0682de97b611a96382e9c4d8e3ccde11b9472ebc5382079f415195d3
cites cdi_FETCH-LOGICAL-c343t-46d7e3ccb0682de97b611a96382e9c4d8e3ccde11b9472ebc5382079f415195d3
container_end_page 49
container_issue
container_start_page 35
container_title Computers & structures
container_volume 186
creator Ni, Junyan
Abdel Wahab, Magd
description •Predicting microstructure development of welding low carbon steels.•Microstructural model integrated into finite element package ABAQUS.•Prediction of volume fractions of each micro-constituents.•Proposed model forecasted the transformation products during and after welding. A numerical metallurgical integrated model, based on Bhadeshia microstructure model, is developed to predict microstructure development of welding low carbon steels. The new model integrates the thermodynamic kinematics equations and provides the start and finish temperatures during continuous cooling, the transformation kinetics, as well as, the resultant volume fractions of each micro-constituents. Further, it is integrated into finite element (FE) commercial package ABAQUS and the laser welding process of DP600 blanks is numerically simulated. The temperature-dependent thermal properties are adopted to calculate the temperature field and history, which are used as input to describe the kinematics of phase transformation. Knowing the chemical composition in each node, the process of austenization and austenite-to-allotriomorphic ferrite/Widmannstätten ferrite/pealite/bainite/martensite are modelled, respectively. The results obtained using our proposed model are compared with those obtained using Kirkaldy model for S355 steel. Furthermore, the results predicted by both models are compared with experimental data. In addition, the predicted volume fractions are validated using experimental data at selected locations. The proposed thermo-metallurgical model serves as a useful tool to forecast the transformation products during and after welding.
doi_str_mv 10.1016/j.compstruc.2017.03.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938147202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794917300445</els_id><sourcerecordid>1938147202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-46d7e3ccb0682de97b611a96382e9c4d8e3ccde11b9472ebc5382079f415195d3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwG7DEnHCOnTgeq_IpVWKB2UrsC3JI4mKnVPx7XBWxMt3wftzdQ8g1g5wBq2773PhxG-ewM3kBTObAcwB1QhasliorCsFPyQJAlJlUQp2Tixh7AKgEwILcrei0GzE40wz0w004NrMzdPQWB-o7usfBuumdboM3GCPtfKCD31PThNZPNM6IQ7wkZ10zRLz6nUvy9nD_un7KNi-Pz-vVJjNc8DkTlZXIjWmhqguLSrYVY42qeF2gMsLWB9EiY60SssDWlEkBqTrBSqZKy5fk5tibrvncYZx173dhSis1U7xmKQVFcsmjywQfY8BOb4Mbm_CtGegDMt3rP2T6gEwD1wlZSq6OyfQTfjkMOhqHk0HrAppZW-_-7fgBbk15Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938147202</pqid></control><display><type>article</type><title>A numerical kinematic model of welding process for low carbon steels</title><source>ScienceDirect Freedom Collection</source><creator>Ni, Junyan ; Abdel Wahab, Magd</creator><creatorcontrib>Ni, Junyan ; Abdel Wahab, Magd</creatorcontrib><description>•Predicting microstructure development of welding low carbon steels.•Microstructural model integrated into finite element package ABAQUS.•Prediction of volume fractions of each micro-constituents.•Proposed model forecasted the transformation products during and after welding. A numerical metallurgical integrated model, based on Bhadeshia microstructure model, is developed to predict microstructure development of welding low carbon steels. The new model integrates the thermodynamic kinematics equations and provides the start and finish temperatures during continuous cooling, the transformation kinetics, as well as, the resultant volume fractions of each micro-constituents. Further, it is integrated into finite element (FE) commercial package ABAQUS and the laser welding process of DP600 blanks is numerically simulated. The temperature-dependent thermal properties are adopted to calculate the temperature field and history, which are used as input to describe the kinematics of phase transformation. Knowing the chemical composition in each node, the process of austenization and austenite-to-allotriomorphic ferrite/Widmannstätten ferrite/pealite/bainite/martensite are modelled, respectively. The results obtained using our proposed model are compared with those obtained using Kirkaldy model for S355 steel. Furthermore, the results predicted by both models are compared with experimental data. In addition, the predicted volume fractions are validated using experimental data at selected locations. The proposed thermo-metallurgical model serves as a useful tool to forecast the transformation products during and after welding.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2017.03.009</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>ABAQUS ; Computer simulation ; Ferrite ; Finite element analysis ; Finite element method ; Iron constituents ; Kinematics ; Laser beam welding ; Low carbon steel ; Low carbon steels ; Martensite ; Martensitic transformations ; Mathematical models ; Metallurgy ; Microstructure ; Numerical analysis ; Phase transformation ; Phase transitions ; Studies ; Temperature distribution ; Thermodynamic properties ; Welding ; Welding process</subject><ispartof>Computers &amp; structures, 2017-07, Vol.186, p.35-49</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-46d7e3ccb0682de97b611a96382e9c4d8e3ccde11b9472ebc5382079f415195d3</citedby><cites>FETCH-LOGICAL-c343t-46d7e3ccb0682de97b611a96382e9c4d8e3ccde11b9472ebc5382079f415195d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ni, Junyan</creatorcontrib><creatorcontrib>Abdel Wahab, Magd</creatorcontrib><title>A numerical kinematic model of welding process for low carbon steels</title><title>Computers &amp; structures</title><description>•Predicting microstructure development of welding low carbon steels.•Microstructural model integrated into finite element package ABAQUS.•Prediction of volume fractions of each micro-constituents.•Proposed model forecasted the transformation products during and after welding. A numerical metallurgical integrated model, based on Bhadeshia microstructure model, is developed to predict microstructure development of welding low carbon steels. The new model integrates the thermodynamic kinematics equations and provides the start and finish temperatures during continuous cooling, the transformation kinetics, as well as, the resultant volume fractions of each micro-constituents. Further, it is integrated into finite element (FE) commercial package ABAQUS and the laser welding process of DP600 blanks is numerically simulated. The temperature-dependent thermal properties are adopted to calculate the temperature field and history, which are used as input to describe the kinematics of phase transformation. Knowing the chemical composition in each node, the process of austenization and austenite-to-allotriomorphic ferrite/Widmannstätten ferrite/pealite/bainite/martensite are modelled, respectively. The results obtained using our proposed model are compared with those obtained using Kirkaldy model for S355 steel. Furthermore, the results predicted by both models are compared with experimental data. In addition, the predicted volume fractions are validated using experimental data at selected locations. The proposed thermo-metallurgical model serves as a useful tool to forecast the transformation products during and after welding.</description><subject>ABAQUS</subject><subject>Computer simulation</subject><subject>Ferrite</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Iron constituents</subject><subject>Kinematics</subject><subject>Laser beam welding</subject><subject>Low carbon steel</subject><subject>Low carbon steels</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Mathematical models</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Numerical analysis</subject><subject>Phase transformation</subject><subject>Phase transitions</subject><subject>Studies</subject><subject>Temperature distribution</subject><subject>Thermodynamic properties</subject><subject>Welding</subject><subject>Welding process</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwG7DEnHCOnTgeq_IpVWKB2UrsC3JI4mKnVPx7XBWxMt3wftzdQ8g1g5wBq2773PhxG-ewM3kBTObAcwB1QhasliorCsFPyQJAlJlUQp2Tixh7AKgEwILcrei0GzE40wz0w004NrMzdPQWB-o7usfBuumdboM3GCPtfKCD31PThNZPNM6IQ7wkZ10zRLz6nUvy9nD_un7KNi-Pz-vVJjNc8DkTlZXIjWmhqguLSrYVY42qeF2gMsLWB9EiY60SssDWlEkBqTrBSqZKy5fk5tibrvncYZx173dhSis1U7xmKQVFcsmjywQfY8BOb4Mbm_CtGegDMt3rP2T6gEwD1wlZSq6OyfQTfjkMOhqHk0HrAppZW-_-7fgBbk15Dw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Ni, Junyan</creator><creator>Abdel Wahab, Magd</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170701</creationdate><title>A numerical kinematic model of welding process for low carbon steels</title><author>Ni, Junyan ; Abdel Wahab, Magd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-46d7e3ccb0682de97b611a96382e9c4d8e3ccde11b9472ebc5382079f415195d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ABAQUS</topic><topic>Computer simulation</topic><topic>Ferrite</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Iron constituents</topic><topic>Kinematics</topic><topic>Laser beam welding</topic><topic>Low carbon steel</topic><topic>Low carbon steels</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Mathematical models</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Numerical analysis</topic><topic>Phase transformation</topic><topic>Phase transitions</topic><topic>Studies</topic><topic>Temperature distribution</topic><topic>Thermodynamic properties</topic><topic>Welding</topic><topic>Welding process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Junyan</creatorcontrib><creatorcontrib>Abdel Wahab, Magd</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Junyan</au><au>Abdel Wahab, Magd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical kinematic model of welding process for low carbon steels</atitle><jtitle>Computers &amp; structures</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>186</volume><spage>35</spage><epage>49</epage><pages>35-49</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>•Predicting microstructure development of welding low carbon steels.•Microstructural model integrated into finite element package ABAQUS.•Prediction of volume fractions of each micro-constituents.•Proposed model forecasted the transformation products during and after welding. A numerical metallurgical integrated model, based on Bhadeshia microstructure model, is developed to predict microstructure development of welding low carbon steels. The new model integrates the thermodynamic kinematics equations and provides the start and finish temperatures during continuous cooling, the transformation kinetics, as well as, the resultant volume fractions of each micro-constituents. Further, it is integrated into finite element (FE) commercial package ABAQUS and the laser welding process of DP600 blanks is numerically simulated. The temperature-dependent thermal properties are adopted to calculate the temperature field and history, which are used as input to describe the kinematics of phase transformation. Knowing the chemical composition in each node, the process of austenization and austenite-to-allotriomorphic ferrite/Widmannstätten ferrite/pealite/bainite/martensite are modelled, respectively. The results obtained using our proposed model are compared with those obtained using Kirkaldy model for S355 steel. Furthermore, the results predicted by both models are compared with experimental data. In addition, the predicted volume fractions are validated using experimental data at selected locations. The proposed thermo-metallurgical model serves as a useful tool to forecast the transformation products during and after welding.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2017.03.009</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2017-07, Vol.186, p.35-49
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_journals_1938147202
source ScienceDirect Freedom Collection
subjects ABAQUS
Computer simulation
Ferrite
Finite element analysis
Finite element method
Iron constituents
Kinematics
Laser beam welding
Low carbon steel
Low carbon steels
Martensite
Martensitic transformations
Mathematical models
Metallurgy
Microstructure
Numerical analysis
Phase transformation
Phase transitions
Studies
Temperature distribution
Thermodynamic properties
Welding
Welding process
title A numerical kinematic model of welding process for low carbon steels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20kinematic%20model%20of%20welding%20process%20for%20low%20carbon%20steels&rft.jtitle=Computers%20&%20structures&rft.au=Ni,%20Junyan&rft.date=2017-07-01&rft.volume=186&rft.spage=35&rft.epage=49&rft.pages=35-49&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2017.03.009&rft_dat=%3Cproquest_cross%3E1938147202%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-46d7e3ccb0682de97b611a96382e9c4d8e3ccde11b9472ebc5382079f415195d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1938147202&rft_id=info:pmid/&rfr_iscdi=true