Loading…
Stabilization of the Motion of Pseudo-Linear Affine Systems
Affine systems of special type are considered. For this class of system of equations, new conditions for stabilization of motion by a linear control of special type are established. These conditions are based on constraints for the fundamental matrix of linear approximation of the system and the vec...
Saved in:
Published in: | International applied mechanics 2017-05, Vol.53 (3), p.334-341 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983 |
container_end_page | 341 |
container_issue | 3 |
container_start_page | 334 |
container_title | International applied mechanics |
container_volume | 53 |
creator | Martynyuk, A. A. Chernetskaya, L. N. Martynyuk-Chernienko, Yu. A. |
description | Affine systems of special type are considered. For this class of system of equations, new conditions for stabilization of motion by a linear control of special type are established. These conditions are based on constraints for the fundamental matrix of linear approximation of the system and the vector function of nonlinearities. Both linear and nonlinear integral inequalities are used |
doi_str_mv | 10.1007/s10778-017-0815-5 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1938181010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513642224</galeid><sourcerecordid>A513642224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gk2TQbPJXiF1QUqueQzU7qlnZTk-2h_npTVsGLzGE-eJ-Z4SXkksE1A1A3iYFSFQWmKFRMUnlERkwqQStZ8eNcw0RQBVqekrOUVgCgldIjcrvobd2u2y_bt6Ergi_6Dyyew2_3mnDXBDpvO7SxmHqfi2KxTz1u0jk58Xad8OInj8n7_d3b7JHOXx6eZtM5dULKnnKHbqJEqURds1I1YgIIrtbgEBvurJeyYoBWVyUi91pb0D6PuPJWOF2JMbka9m5j-Nxh6s0q7GKXTxqmRcUyzSCrrgfV0q7RtJ0PfbQuR4Ob1oUOfZvnU8nEpOSclxlgA-BiSCmiN9vYbmzcGwbmYKoZTDXZVHMw1cjM8IFJWdstMf555V_oG1P3eGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938181010</pqid></control><display><type>article</type><title>Stabilization of the Motion of Pseudo-Linear Affine Systems</title><source>Springer Nature</source><creator>Martynyuk, A. A. ; Chernetskaya, L. N. ; Martynyuk-Chernienko, Yu. A.</creator><creatorcontrib>Martynyuk, A. A. ; Chernetskaya, L. N. ; Martynyuk-Chernienko, Yu. A.</creatorcontrib><description>Affine systems of special type are considered. For this class of system of equations, new conditions for stabilization of motion by a linear control of special type are established. These conditions are based on constraints for the fundamental matrix of linear approximation of the system and the vector function of nonlinearities. Both linear and nonlinear integral inequalities are used</description><identifier>ISSN: 1063-7095</identifier><identifier>EISSN: 1573-8582</identifier><identifier>DOI: 10.1007/s10778-017-0815-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Inequalities ; Linear control ; Mathematical analysis ; Matrix methods ; Physics ; Physics and Astronomy ; Stabilization</subject><ispartof>International applied mechanics, 2017-05, Vol.53 (3), p.334-341</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983</citedby><cites>FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Martynyuk, A. A.</creatorcontrib><creatorcontrib>Chernetskaya, L. N.</creatorcontrib><creatorcontrib>Martynyuk-Chernienko, Yu. A.</creatorcontrib><title>Stabilization of the Motion of Pseudo-Linear Affine Systems</title><title>International applied mechanics</title><addtitle>Int Appl Mech</addtitle><description>Affine systems of special type are considered. For this class of system of equations, new conditions for stabilization of motion by a linear control of special type are established. These conditions are based on constraints for the fundamental matrix of linear approximation of the system and the vector function of nonlinearities. Both linear and nonlinear integral inequalities are used</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Inequalities</subject><subject>Linear control</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stabilization</subject><issn>1063-7095</issn><issn>1573-8582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gk2TQbPJXiF1QUqueQzU7qlnZTk-2h_npTVsGLzGE-eJ-Z4SXkksE1A1A3iYFSFQWmKFRMUnlERkwqQStZ8eNcw0RQBVqekrOUVgCgldIjcrvobd2u2y_bt6Ergi_6Dyyew2_3mnDXBDpvO7SxmHqfi2KxTz1u0jk58Xad8OInj8n7_d3b7JHOXx6eZtM5dULKnnKHbqJEqURds1I1YgIIrtbgEBvurJeyYoBWVyUi91pb0D6PuPJWOF2JMbka9m5j-Nxh6s0q7GKXTxqmRcUyzSCrrgfV0q7RtJ0PfbQuR4Ob1oUOfZvnU8nEpOSclxlgA-BiSCmiN9vYbmzcGwbmYKoZTDXZVHMw1cjM8IFJWdstMf555V_oG1P3eGg</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Martynyuk, A. A.</creator><creator>Chernetskaya, L. N.</creator><creator>Martynyuk-Chernienko, Yu. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>Stabilization of the Motion of Pseudo-Linear Affine Systems</title><author>Martynyuk, A. A. ; Chernetskaya, L. N. ; Martynyuk-Chernienko, Yu. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Inequalities</topic><topic>Linear control</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martynyuk, A. A.</creatorcontrib><creatorcontrib>Chernetskaya, L. N.</creatorcontrib><creatorcontrib>Martynyuk-Chernienko, Yu. A.</creatorcontrib><collection>CrossRef</collection><jtitle>International applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martynyuk, A. A.</au><au>Chernetskaya, L. N.</au><au>Martynyuk-Chernienko, Yu. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of the Motion of Pseudo-Linear Affine Systems</atitle><jtitle>International applied mechanics</jtitle><stitle>Int Appl Mech</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>53</volume><issue>3</issue><spage>334</spage><epage>341</epage><pages>334-341</pages><issn>1063-7095</issn><eissn>1573-8582</eissn><abstract>Affine systems of special type are considered. For this class of system of equations, new conditions for stabilization of motion by a linear control of special type are established. These conditions are based on constraints for the fundamental matrix of linear approximation of the system and the vector function of nonlinearities. Both linear and nonlinear integral inequalities are used</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10778-017-0815-5</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7095 |
ispartof | International applied mechanics, 2017-05, Vol.53 (3), p.334-341 |
issn | 1063-7095 1573-8582 |
language | eng |
recordid | cdi_proquest_journals_1938181010 |
source | Springer Nature |
subjects | Applications of Mathematics Classical Mechanics Inequalities Linear control Mathematical analysis Matrix methods Physics Physics and Astronomy Stabilization |
title | Stabilization of the Motion of Pseudo-Linear Affine Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20the%20Motion%20of%20Pseudo-Linear%20Affine%20Systems&rft.jtitle=International%20applied%20mechanics&rft.au=Martynyuk,%20A.%20A.&rft.date=2017-05-01&rft.volume=53&rft.issue=3&rft.spage=334&rft.epage=341&rft.pages=334-341&rft.issn=1063-7095&rft.eissn=1573-8582&rft_id=info:doi/10.1007/s10778-017-0815-5&rft_dat=%3Cgale_proqu%3EA513642224%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1938181010&rft_id=info:pmid/&rft_galeid=A513642224&rfr_iscdi=true |