Loading…

Stabilization of the Motion of Pseudo-Linear Affine Systems

Affine systems of special type are considered. For this class of system of equations, new conditions for stabilization of motion by a linear control of special type are established. These conditions are based on constraints for the fundamental matrix of linear approximation of the system and the vec...

Full description

Saved in:
Bibliographic Details
Published in:International applied mechanics 2017-05, Vol.53 (3), p.334-341
Main Authors: Martynyuk, A. A., Chernetskaya, L. N., Martynyuk-Chernienko, Yu. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983
cites cdi_FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983
container_end_page 341
container_issue 3
container_start_page 334
container_title International applied mechanics
container_volume 53
creator Martynyuk, A. A.
Chernetskaya, L. N.
Martynyuk-Chernienko, Yu. A.
description Affine systems of special type are considered. For this class of system of equations, new conditions for stabilization of motion by a linear control of special type are established. These conditions are based on constraints for the fundamental matrix of linear approximation of the system and the vector function of nonlinearities. Both linear and nonlinear integral inequalities are used
doi_str_mv 10.1007/s10778-017-0815-5
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1938181010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513642224</galeid><sourcerecordid>A513642224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gk2TQbPJXiF1QUqueQzU7qlnZTk-2h_npTVsGLzGE-eJ-Z4SXkksE1A1A3iYFSFQWmKFRMUnlERkwqQStZ8eNcw0RQBVqekrOUVgCgldIjcrvobd2u2y_bt6Ergi_6Dyyew2_3mnDXBDpvO7SxmHqfi2KxTz1u0jk58Xad8OInj8n7_d3b7JHOXx6eZtM5dULKnnKHbqJEqURds1I1YgIIrtbgEBvurJeyYoBWVyUi91pb0D6PuPJWOF2JMbka9m5j-Nxh6s0q7GKXTxqmRcUyzSCrrgfV0q7RtJ0PfbQuR4Ob1oUOfZvnU8nEpOSclxlgA-BiSCmiN9vYbmzcGwbmYKoZTDXZVHMw1cjM8IFJWdstMf555V_oG1P3eGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938181010</pqid></control><display><type>article</type><title>Stabilization of the Motion of Pseudo-Linear Affine Systems</title><source>Springer Nature</source><creator>Martynyuk, A. A. ; Chernetskaya, L. N. ; Martynyuk-Chernienko, Yu. A.</creator><creatorcontrib>Martynyuk, A. A. ; Chernetskaya, L. N. ; Martynyuk-Chernienko, Yu. A.</creatorcontrib><description>Affine systems of special type are considered. For this class of system of equations, new conditions for stabilization of motion by a linear control of special type are established. These conditions are based on constraints for the fundamental matrix of linear approximation of the system and the vector function of nonlinearities. Both linear and nonlinear integral inequalities are used</description><identifier>ISSN: 1063-7095</identifier><identifier>EISSN: 1573-8582</identifier><identifier>DOI: 10.1007/s10778-017-0815-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Inequalities ; Linear control ; Mathematical analysis ; Matrix methods ; Physics ; Physics and Astronomy ; Stabilization</subject><ispartof>International applied mechanics, 2017-05, Vol.53 (3), p.334-341</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983</citedby><cites>FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Martynyuk, A. A.</creatorcontrib><creatorcontrib>Chernetskaya, L. N.</creatorcontrib><creatorcontrib>Martynyuk-Chernienko, Yu. A.</creatorcontrib><title>Stabilization of the Motion of Pseudo-Linear Affine Systems</title><title>International applied mechanics</title><addtitle>Int Appl Mech</addtitle><description>Affine systems of special type are considered. For this class of system of equations, new conditions for stabilization of motion by a linear control of special type are established. These conditions are based on constraints for the fundamental matrix of linear approximation of the system and the vector function of nonlinearities. Both linear and nonlinear integral inequalities are used</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Inequalities</subject><subject>Linear control</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stabilization</subject><issn>1063-7095</issn><issn>1573-8582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gk2TQbPJXiF1QUqueQzU7qlnZTk-2h_npTVsGLzGE-eJ-Z4SXkksE1A1A3iYFSFQWmKFRMUnlERkwqQStZ8eNcw0RQBVqekrOUVgCgldIjcrvobd2u2y_bt6Ergi_6Dyyew2_3mnDXBDpvO7SxmHqfi2KxTz1u0jk58Xad8OInj8n7_d3b7JHOXx6eZtM5dULKnnKHbqJEqURds1I1YgIIrtbgEBvurJeyYoBWVyUi91pb0D6PuPJWOF2JMbka9m5j-Nxh6s0q7GKXTxqmRcUyzSCrrgfV0q7RtJ0PfbQuR4Ob1oUOfZvnU8nEpOSclxlgA-BiSCmiN9vYbmzcGwbmYKoZTDXZVHMw1cjM8IFJWdstMf555V_oG1P3eGg</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Martynyuk, A. A.</creator><creator>Chernetskaya, L. N.</creator><creator>Martynyuk-Chernienko, Yu. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>Stabilization of the Motion of Pseudo-Linear Affine Systems</title><author>Martynyuk, A. A. ; Chernetskaya, L. N. ; Martynyuk-Chernienko, Yu. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Inequalities</topic><topic>Linear control</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martynyuk, A. A.</creatorcontrib><creatorcontrib>Chernetskaya, L. N.</creatorcontrib><creatorcontrib>Martynyuk-Chernienko, Yu. A.</creatorcontrib><collection>CrossRef</collection><jtitle>International applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martynyuk, A. A.</au><au>Chernetskaya, L. N.</au><au>Martynyuk-Chernienko, Yu. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of the Motion of Pseudo-Linear Affine Systems</atitle><jtitle>International applied mechanics</jtitle><stitle>Int Appl Mech</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>53</volume><issue>3</issue><spage>334</spage><epage>341</epage><pages>334-341</pages><issn>1063-7095</issn><eissn>1573-8582</eissn><abstract>Affine systems of special type are considered. For this class of system of equations, new conditions for stabilization of motion by a linear control of special type are established. These conditions are based on constraints for the fundamental matrix of linear approximation of the system and the vector function of nonlinearities. Both linear and nonlinear integral inequalities are used</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10778-017-0815-5</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7095
ispartof International applied mechanics, 2017-05, Vol.53 (3), p.334-341
issn 1063-7095
1573-8582
language eng
recordid cdi_proquest_journals_1938181010
source Springer Nature
subjects Applications of Mathematics
Classical Mechanics
Inequalities
Linear control
Mathematical analysis
Matrix methods
Physics
Physics and Astronomy
Stabilization
title Stabilization of the Motion of Pseudo-Linear Affine Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20the%20Motion%20of%20Pseudo-Linear%20Affine%20Systems&rft.jtitle=International%20applied%20mechanics&rft.au=Martynyuk,%20A.%20A.&rft.date=2017-05-01&rft.volume=53&rft.issue=3&rft.spage=334&rft.epage=341&rft.pages=334-341&rft.issn=1063-7095&rft.eissn=1573-8582&rft_id=info:doi/10.1007/s10778-017-0815-5&rft_dat=%3Cgale_proqu%3EA513642224%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-2cec673473bb147d360e0cb90ceed2caf55810ea984ee2f99a09f58127fa3c983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1938181010&rft_id=info:pmid/&rft_galeid=A513642224&rfr_iscdi=true