Loading…

Bubble nucleation and dissolution in multicomponent fluids near a phase boundary using a rapid heat pulse

•Thermal pulse of pulsed wire immersed in fluid mixture characterized thermally.•Thermal pulse used to measure phase envelope quickly by rapid nucleation of second phase.•Bubble dissolution kinetics measured in single and multi-component fluids.•Nucleation not observed above critical line.•Morpholog...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2017-07, Vol.110, p.172-192
Main Authors: Demur, Romain, Oukmal, Jed, Luu, Guillaume, Mousset, Cécile, Leman, Marie, Villares, Gustavo, Kerdraon, Margaux, Sullivan, Matthew, Harrison, Christopher
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-8632ca0762bccc0978346d9ad77376c91bc35284702a1cda106113e1b69835253
cites cdi_FETCH-LOGICAL-c370t-8632ca0762bccc0978346d9ad77376c91bc35284702a1cda106113e1b69835253
container_end_page 192
container_issue
container_start_page 172
container_title International journal of heat and mass transfer
container_volume 110
creator Demur, Romain
Oukmal, Jed
Luu, Guillaume
Mousset, Cécile
Leman, Marie
Villares, Gustavo
Kerdraon, Margaux
Sullivan, Matthew
Harrison, Christopher
description •Thermal pulse of pulsed wire immersed in fluid mixture characterized thermally.•Thermal pulse used to measure phase envelope quickly by rapid nucleation of second phase.•Bubble dissolution kinetics measured in single and multi-component fluids.•Nucleation not observed above critical line.•Morphologies of nucleated bubbles characterized in single and multi-component fluids. We report a novel means of nucleating a second phase using a miniature thermal nucleation source that operates with fluid mixtures at elevated temperature and pressure. This rapid nucleation source locally creates a short-lived (millisecond) but large (up to 107K/m) thermal gradient that we exploit to overcome the nucleation barrier in single and multicomponent fluids, eliminating the need for traditional mechanical agitation. We find good agreement between the phase envelope measured with this method and that measured using a conventional apparatus with mechanical agitation acting as a nucleation source for several binary alkane mixtures. Consistent with expectations, we find that thermal nucleation cannot trigger production of a second phase for temperatures and pressures higher than that of the critical point for single-component fluids, However, we find a range of temperatures and pressures completely outside the phase envelope for multi-component mixtures where thermal nucleation temporarily and anomalously appears to produce a second phase, contrary to expectations based on equilibrium thermodynamics. The relationship between the magnitude of undersaturation and the rate of bubble dissolution is studied in single and multi-component fluids. Direct observations of the morphology that is created during nucleation reveal a sharp interface between coalescing droplets, consistent with the second phase possessing an interfacial tension with respect to the continuous phase.
doi_str_mv 10.1016/j.ijheatmasstransfer.2017.02.076
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1939227076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931016327594</els_id><sourcerecordid>1939227076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-8632ca0762bccc0978346d9ad77376c91bc35284702a1cda106113e1b69835253</originalsourceid><addsrcrecordid>eNqNkLtOxDAQRS0EEsvCP1iioUnwYzeOOx7iqZVooLYc22EdJXawYyT-HofQ0VCNZu7ozJ0LwAVGJUa4uuxK2-2NnAYZ4xSki60JJUGYlYiUiFUHYIVrxguCa34IVigrBacYHYOTGLu5RZtqBexNapreQJdUn2nWOyidhtrG6Pv001sHh9RPVvlh9M64CbZ9sjpCZ2SAEo57GQ1sfHJahi-YonXveRzkaDWcLcIx9dGcgqNW5nr2W9fg7f7u9fax2L08PN1e7wpFGZqKuqJEyfwAaZRSiLOabirNpWaMskpx3Ci6JfWGISKx0hKjCmNqcFPxOgtbugbnC3cM_iOZOInOp-DySYE55YSwDM9bV8uWCj7GYFoxBjtk_wIjMQcsOvE3YDEHLBARC-J5QZj8zafNalTWOGW0DUZNQnv7f9g3iy-RhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939227076</pqid></control><display><type>article</type><title>Bubble nucleation and dissolution in multicomponent fluids near a phase boundary using a rapid heat pulse</title><source>ScienceDirect Freedom Collection</source><creator>Demur, Romain ; Oukmal, Jed ; Luu, Guillaume ; Mousset, Cécile ; Leman, Marie ; Villares, Gustavo ; Kerdraon, Margaux ; Sullivan, Matthew ; Harrison, Christopher</creator><creatorcontrib>Demur, Romain ; Oukmal, Jed ; Luu, Guillaume ; Mousset, Cécile ; Leman, Marie ; Villares, Gustavo ; Kerdraon, Margaux ; Sullivan, Matthew ; Harrison, Christopher</creatorcontrib><description>•Thermal pulse of pulsed wire immersed in fluid mixture characterized thermally.•Thermal pulse used to measure phase envelope quickly by rapid nucleation of second phase.•Bubble dissolution kinetics measured in single and multi-component fluids.•Nucleation not observed above critical line.•Morphologies of nucleated bubbles characterized in single and multi-component fluids. We report a novel means of nucleating a second phase using a miniature thermal nucleation source that operates with fluid mixtures at elevated temperature and pressure. This rapid nucleation source locally creates a short-lived (millisecond) but large (up to 107K/m) thermal gradient that we exploit to overcome the nucleation barrier in single and multicomponent fluids, eliminating the need for traditional mechanical agitation. We find good agreement between the phase envelope measured with this method and that measured using a conventional apparatus with mechanical agitation acting as a nucleation source for several binary alkane mixtures. Consistent with expectations, we find that thermal nucleation cannot trigger production of a second phase for temperatures and pressures higher than that of the critical point for single-component fluids, However, we find a range of temperatures and pressures completely outside the phase envelope for multi-component mixtures where thermal nucleation temporarily and anomalously appears to produce a second phase, contrary to expectations based on equilibrium thermodynamics. The relationship between the magnitude of undersaturation and the rate of bubble dissolution is studied in single and multi-component fluids. Direct observations of the morphology that is created during nucleation reveal a sharp interface between coalescing droplets, consistent with the second phase possessing an interfacial tension with respect to the continuous phase.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2017.02.076</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Agitation ; Alkanes ; Boiling ; Bubbles ; Coalescing ; Critical point ; Dissolution ; Fluids ; Heat conductivity ; Heat pulses ; Heat transfer ; High temperature ; Microfluidics ; Morphology ; Nucleation ; Phase boundary ; Pseudoboiling ; Studies ; Surface tension ; Thermodynamics</subject><ispartof>International journal of heat and mass transfer, 2017-07, Vol.110, p.172-192</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-8632ca0762bccc0978346d9ad77376c91bc35284702a1cda106113e1b69835253</citedby><cites>FETCH-LOGICAL-c370t-8632ca0762bccc0978346d9ad77376c91bc35284702a1cda106113e1b69835253</cites><orcidid>0000-0002-6481-4762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Demur, Romain</creatorcontrib><creatorcontrib>Oukmal, Jed</creatorcontrib><creatorcontrib>Luu, Guillaume</creatorcontrib><creatorcontrib>Mousset, Cécile</creatorcontrib><creatorcontrib>Leman, Marie</creatorcontrib><creatorcontrib>Villares, Gustavo</creatorcontrib><creatorcontrib>Kerdraon, Margaux</creatorcontrib><creatorcontrib>Sullivan, Matthew</creatorcontrib><creatorcontrib>Harrison, Christopher</creatorcontrib><title>Bubble nucleation and dissolution in multicomponent fluids near a phase boundary using a rapid heat pulse</title><title>International journal of heat and mass transfer</title><description>•Thermal pulse of pulsed wire immersed in fluid mixture characterized thermally.•Thermal pulse used to measure phase envelope quickly by rapid nucleation of second phase.•Bubble dissolution kinetics measured in single and multi-component fluids.•Nucleation not observed above critical line.•Morphologies of nucleated bubbles characterized in single and multi-component fluids. We report a novel means of nucleating a second phase using a miniature thermal nucleation source that operates with fluid mixtures at elevated temperature and pressure. This rapid nucleation source locally creates a short-lived (millisecond) but large (up to 107K/m) thermal gradient that we exploit to overcome the nucleation barrier in single and multicomponent fluids, eliminating the need for traditional mechanical agitation. We find good agreement between the phase envelope measured with this method and that measured using a conventional apparatus with mechanical agitation acting as a nucleation source for several binary alkane mixtures. Consistent with expectations, we find that thermal nucleation cannot trigger production of a second phase for temperatures and pressures higher than that of the critical point for single-component fluids, However, we find a range of temperatures and pressures completely outside the phase envelope for multi-component mixtures where thermal nucleation temporarily and anomalously appears to produce a second phase, contrary to expectations based on equilibrium thermodynamics. The relationship between the magnitude of undersaturation and the rate of bubble dissolution is studied in single and multi-component fluids. Direct observations of the morphology that is created during nucleation reveal a sharp interface between coalescing droplets, consistent with the second phase possessing an interfacial tension with respect to the continuous phase.</description><subject>Agitation</subject><subject>Alkanes</subject><subject>Boiling</subject><subject>Bubbles</subject><subject>Coalescing</subject><subject>Critical point</subject><subject>Dissolution</subject><subject>Fluids</subject><subject>Heat conductivity</subject><subject>Heat pulses</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Microfluidics</subject><subject>Morphology</subject><subject>Nucleation</subject><subject>Phase boundary</subject><subject>Pseudoboiling</subject><subject>Studies</subject><subject>Surface tension</subject><subject>Thermodynamics</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkLtOxDAQRS0EEsvCP1iioUnwYzeOOx7iqZVooLYc22EdJXawYyT-HofQ0VCNZu7ozJ0LwAVGJUa4uuxK2-2NnAYZ4xSki60JJUGYlYiUiFUHYIVrxguCa34IVigrBacYHYOTGLu5RZtqBexNapreQJdUn2nWOyidhtrG6Pv001sHh9RPVvlh9M64CbZ9sjpCZ2SAEo57GQ1sfHJahi-YonXveRzkaDWcLcIx9dGcgqNW5nr2W9fg7f7u9fax2L08PN1e7wpFGZqKuqJEyfwAaZRSiLOabirNpWaMskpx3Ci6JfWGISKx0hKjCmNqcFPxOgtbugbnC3cM_iOZOInOp-DySYE55YSwDM9bV8uWCj7GYFoxBjtk_wIjMQcsOvE3YDEHLBARC-J5QZj8zafNalTWOGW0DUZNQnv7f9g3iy-RhQ</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Demur, Romain</creator><creator>Oukmal, Jed</creator><creator>Luu, Guillaume</creator><creator>Mousset, Cécile</creator><creator>Leman, Marie</creator><creator>Villares, Gustavo</creator><creator>Kerdraon, Margaux</creator><creator>Sullivan, Matthew</creator><creator>Harrison, Christopher</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6481-4762</orcidid></search><sort><creationdate>20170701</creationdate><title>Bubble nucleation and dissolution in multicomponent fluids near a phase boundary using a rapid heat pulse</title><author>Demur, Romain ; Oukmal, Jed ; Luu, Guillaume ; Mousset, Cécile ; Leman, Marie ; Villares, Gustavo ; Kerdraon, Margaux ; Sullivan, Matthew ; Harrison, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-8632ca0762bccc0978346d9ad77376c91bc35284702a1cda106113e1b69835253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agitation</topic><topic>Alkanes</topic><topic>Boiling</topic><topic>Bubbles</topic><topic>Coalescing</topic><topic>Critical point</topic><topic>Dissolution</topic><topic>Fluids</topic><topic>Heat conductivity</topic><topic>Heat pulses</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Microfluidics</topic><topic>Morphology</topic><topic>Nucleation</topic><topic>Phase boundary</topic><topic>Pseudoboiling</topic><topic>Studies</topic><topic>Surface tension</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demur, Romain</creatorcontrib><creatorcontrib>Oukmal, Jed</creatorcontrib><creatorcontrib>Luu, Guillaume</creatorcontrib><creatorcontrib>Mousset, Cécile</creatorcontrib><creatorcontrib>Leman, Marie</creatorcontrib><creatorcontrib>Villares, Gustavo</creatorcontrib><creatorcontrib>Kerdraon, Margaux</creatorcontrib><creatorcontrib>Sullivan, Matthew</creatorcontrib><creatorcontrib>Harrison, Christopher</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demur, Romain</au><au>Oukmal, Jed</au><au>Luu, Guillaume</au><au>Mousset, Cécile</au><au>Leman, Marie</au><au>Villares, Gustavo</au><au>Kerdraon, Margaux</au><au>Sullivan, Matthew</au><au>Harrison, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bubble nucleation and dissolution in multicomponent fluids near a phase boundary using a rapid heat pulse</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>110</volume><spage>172</spage><epage>192</epage><pages>172-192</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Thermal pulse of pulsed wire immersed in fluid mixture characterized thermally.•Thermal pulse used to measure phase envelope quickly by rapid nucleation of second phase.•Bubble dissolution kinetics measured in single and multi-component fluids.•Nucleation not observed above critical line.•Morphologies of nucleated bubbles characterized in single and multi-component fluids. We report a novel means of nucleating a second phase using a miniature thermal nucleation source that operates with fluid mixtures at elevated temperature and pressure. This rapid nucleation source locally creates a short-lived (millisecond) but large (up to 107K/m) thermal gradient that we exploit to overcome the nucleation barrier in single and multicomponent fluids, eliminating the need for traditional mechanical agitation. We find good agreement between the phase envelope measured with this method and that measured using a conventional apparatus with mechanical agitation acting as a nucleation source for several binary alkane mixtures. Consistent with expectations, we find that thermal nucleation cannot trigger production of a second phase for temperatures and pressures higher than that of the critical point for single-component fluids, However, we find a range of temperatures and pressures completely outside the phase envelope for multi-component mixtures where thermal nucleation temporarily and anomalously appears to produce a second phase, contrary to expectations based on equilibrium thermodynamics. The relationship between the magnitude of undersaturation and the rate of bubble dissolution is studied in single and multi-component fluids. Direct observations of the morphology that is created during nucleation reveal a sharp interface between coalescing droplets, consistent with the second phase possessing an interfacial tension with respect to the continuous phase.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2017.02.076</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-6481-4762</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2017-07, Vol.110, p.172-192
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_1939227076
source ScienceDirect Freedom Collection
subjects Agitation
Alkanes
Boiling
Bubbles
Coalescing
Critical point
Dissolution
Fluids
Heat conductivity
Heat pulses
Heat transfer
High temperature
Microfluidics
Morphology
Nucleation
Phase boundary
Pseudoboiling
Studies
Surface tension
Thermodynamics
title Bubble nucleation and dissolution in multicomponent fluids near a phase boundary using a rapid heat pulse
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bubble%20nucleation%20and%20dissolution%20in%20multicomponent%20fluids%20near%20a%20phase%20boundary%20using%20a%20rapid%20heat%20pulse&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Demur,%20Romain&rft.date=2017-07-01&rft.volume=110&rft.spage=172&rft.epage=192&rft.pages=172-192&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2017.02.076&rft_dat=%3Cproquest_cross%3E1939227076%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-8632ca0762bccc0978346d9ad77376c91bc35284702a1cda106113e1b69835253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1939227076&rft_id=info:pmid/&rfr_iscdi=true