Loading…

Kinetic study and growth behavior of template-based electrodeposited platinum nanotubes controlled by overpotential

Platinum nanotubes (PtNTs) are fabricated by potentiostatic electrodeposition at various overpotentials (−200 up to −400 mV versus SCE) in polycarbonate templates (PCTs) with pore diameter of 200 nm in a solution containing 5 mM H2PtCl6 and 0.1 M H2SO4. The synthesized PtNTs are characterized by fie...

Full description

Saved in:
Bibliographic Details
Published in:Materials chemistry and physics 2017-02, Vol.187, p.141-148
Main Authors: Yousefi, E., Dolati, A., Imanieh, I., Yashiro, H., Kure-Chu, S.-Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-b82eda27c7a8ba20997189beff28006acf5043c654ddff83e95808a64f923a4a3
cites cdi_FETCH-LOGICAL-c349t-b82eda27c7a8ba20997189beff28006acf5043c654ddff83e95808a64f923a4a3
container_end_page 148
container_issue
container_start_page 141
container_title Materials chemistry and physics
container_volume 187
creator Yousefi, E.
Dolati, A.
Imanieh, I.
Yashiro, H.
Kure-Chu, S.-Z.
description Platinum nanotubes (PtNTs) are fabricated by potentiostatic electrodeposition at various overpotentials (−200 up to −400 mV versus SCE) in polycarbonate templates (PCTs) with pore diameter of 200 nm in a solution containing 5 mM H2PtCl6 and 0.1 M H2SO4. The synthesized PtNTs are characterized by field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The electrochemical growth mechanism within nanoscopic pores and the relationship between morphological variations and kinetic parameters are investigated for the first time. It is shown that more porous structure of nanotubes forms at high overpotentials possibly due to preferably nucleation. The kinetics of electrodeposition process is studied by electrochemical techniques such as voltammetry and chronoamperometry. The linear diffusion coefficient at the early stage of the deposition and the radial diffusion coefficients at steady state regime are calculated as D = 8.39 × 10−5 and 2.33–13.26 × 10−8 cm2/s, respectively. The synthesized PtNT electrode is tested as electrocatalyst for hydrogen peroxide oxidation in phosphate buffer solution (PBS) and shows a sensitivity as high as 2.89 mA per 1 μM that is an indication to its enlarged electrochemical surface area. •PtNT is electrodeposited in a 3-aminopropyltrimethoxysilane-modified PCT.•The electrochemical growth mechanism within nanoscopic pores is discussed.•The kinetics of PtNT electrodeposition is studied based on models for UME arrays.•Relationship between morphological variations vs. kinetic parameters is studied.
doi_str_mv 10.1016/j.matchemphys.2016.11.058
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1939229587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058416308914</els_id><sourcerecordid>1939229587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b82eda27c7a8ba20997189beff28006acf5043c654ddff83e95808a64f923a4a3</originalsourceid><addsrcrecordid>eNqNkE9PGzEQxa2KSg2U7-CK8279ZzdrH1FEoQKJC5wtrz0mjjb21vYG5dvjKD1w5DTSm_feaH4I_aKkpYSuf-_avS5mC_t5e8wtq1JLaUt68Q2tqBhkwzllF2hFWN81Ve5-oMucd4TQgVK-QvnRByje4FwWe8Q6WPyW4nvZ4hG2-uBjwtHhUvsnXaAZdQaLYQJTUrQwx-xLFU5LH5Y9DjrEsoyQsYmhWqapbscjjgdIcywQitfTT_Td6SnD9f95hV7_3L1sHpqn5_u_m9unxvBOlmYUDKxmgxm0GDUjUg5UyBGcY4KQtTauJx03676z1jnBQfaCCL3unGRcd5pfoZtz75zivwVyUbu4pFBPKiq5ZKwGhuqSZ5dJMecETs3J73U6KkrUibHaqU-M1YmxolRVmDW7OWehvnHwkFQ2HoIB61NFpGz0X2j5APyujx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939229587</pqid></control><display><type>article</type><title>Kinetic study and growth behavior of template-based electrodeposited platinum nanotubes controlled by overpotential</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yousefi, E. ; Dolati, A. ; Imanieh, I. ; Yashiro, H. ; Kure-Chu, S.-Z.</creator><creatorcontrib>Yousefi, E. ; Dolati, A. ; Imanieh, I. ; Yashiro, H. ; Kure-Chu, S.-Z.</creatorcontrib><description>Platinum nanotubes (PtNTs) are fabricated by potentiostatic electrodeposition at various overpotentials (−200 up to −400 mV versus SCE) in polycarbonate templates (PCTs) with pore diameter of 200 nm in a solution containing 5 mM H2PtCl6 and 0.1 M H2SO4. The synthesized PtNTs are characterized by field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The electrochemical growth mechanism within nanoscopic pores and the relationship between morphological variations and kinetic parameters are investigated for the first time. It is shown that more porous structure of nanotubes forms at high overpotentials possibly due to preferably nucleation. The kinetics of electrodeposition process is studied by electrochemical techniques such as voltammetry and chronoamperometry. The linear diffusion coefficient at the early stage of the deposition and the radial diffusion coefficients at steady state regime are calculated as D = 8.39 × 10−5 and 2.33–13.26 × 10−8 cm2/s, respectively. The synthesized PtNT electrode is tested as electrocatalyst for hydrogen peroxide oxidation in phosphate buffer solution (PBS) and shows a sensitivity as high as 2.89 mA per 1 μM that is an indication to its enlarged electrochemical surface area. •PtNT is electrodeposited in a 3-aminopropyltrimethoxysilane-modified PCT.•The electrochemical growth mechanism within nanoscopic pores is discussed.•The kinetics of PtNT electrodeposition is studied based on models for UME arrays.•Relationship between morphological variations vs. kinetic parameters is studied.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2016.11.058</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Diffusion ; Diffusion coefficient ; Electrochemical techniques ; Electrodeposition ; Field emission microscopy ; Hydrogen peroxide ; Kinetics ; Mathematical analysis ; Nanostructures ; Nanotubes ; Oxidation ; Platinum ; Synthesis ; Transmission electron microscopy ; Voltammetry</subject><ispartof>Materials chemistry and physics, 2017-02, Vol.187, p.141-148</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b82eda27c7a8ba20997189beff28006acf5043c654ddff83e95808a64f923a4a3</citedby><cites>FETCH-LOGICAL-c349t-b82eda27c7a8ba20997189beff28006acf5043c654ddff83e95808a64f923a4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yousefi, E.</creatorcontrib><creatorcontrib>Dolati, A.</creatorcontrib><creatorcontrib>Imanieh, I.</creatorcontrib><creatorcontrib>Yashiro, H.</creatorcontrib><creatorcontrib>Kure-Chu, S.-Z.</creatorcontrib><title>Kinetic study and growth behavior of template-based electrodeposited platinum nanotubes controlled by overpotential</title><title>Materials chemistry and physics</title><description>Platinum nanotubes (PtNTs) are fabricated by potentiostatic electrodeposition at various overpotentials (−200 up to −400 mV versus SCE) in polycarbonate templates (PCTs) with pore diameter of 200 nm in a solution containing 5 mM H2PtCl6 and 0.1 M H2SO4. The synthesized PtNTs are characterized by field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The electrochemical growth mechanism within nanoscopic pores and the relationship between morphological variations and kinetic parameters are investigated for the first time. It is shown that more porous structure of nanotubes forms at high overpotentials possibly due to preferably nucleation. The kinetics of electrodeposition process is studied by electrochemical techniques such as voltammetry and chronoamperometry. The linear diffusion coefficient at the early stage of the deposition and the radial diffusion coefficients at steady state regime are calculated as D = 8.39 × 10−5 and 2.33–13.26 × 10−8 cm2/s, respectively. The synthesized PtNT electrode is tested as electrocatalyst for hydrogen peroxide oxidation in phosphate buffer solution (PBS) and shows a sensitivity as high as 2.89 mA per 1 μM that is an indication to its enlarged electrochemical surface area. •PtNT is electrodeposited in a 3-aminopropyltrimethoxysilane-modified PCT.•The electrochemical growth mechanism within nanoscopic pores is discussed.•The kinetics of PtNT electrodeposition is studied based on models for UME arrays.•Relationship between morphological variations vs. kinetic parameters is studied.</description><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Electrochemical techniques</subject><subject>Electrodeposition</subject><subject>Field emission microscopy</subject><subject>Hydrogen peroxide</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Nanostructures</subject><subject>Nanotubes</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Synthesis</subject><subject>Transmission electron microscopy</subject><subject>Voltammetry</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PGzEQxa2KSg2U7-CK8279ZzdrH1FEoQKJC5wtrz0mjjb21vYG5dvjKD1w5DTSm_feaH4I_aKkpYSuf-_avS5mC_t5e8wtq1JLaUt68Q2tqBhkwzllF2hFWN81Ve5-oMucd4TQgVK-QvnRByje4FwWe8Q6WPyW4nvZ4hG2-uBjwtHhUvsnXaAZdQaLYQJTUrQwx-xLFU5LH5Y9DjrEsoyQsYmhWqapbscjjgdIcywQitfTT_Td6SnD9f95hV7_3L1sHpqn5_u_m9unxvBOlmYUDKxmgxm0GDUjUg5UyBGcY4KQtTauJx03676z1jnBQfaCCL3unGRcd5pfoZtz75zivwVyUbu4pFBPKiq5ZKwGhuqSZ5dJMecETs3J73U6KkrUibHaqU-M1YmxolRVmDW7OWehvnHwkFQ2HoIB61NFpGz0X2j5APyujx0</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Yousefi, E.</creator><creator>Dolati, A.</creator><creator>Imanieh, I.</creator><creator>Yashiro, H.</creator><creator>Kure-Chu, S.-Z.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170201</creationdate><title>Kinetic study and growth behavior of template-based electrodeposited platinum nanotubes controlled by overpotential</title><author>Yousefi, E. ; Dolati, A. ; Imanieh, I. ; Yashiro, H. ; Kure-Chu, S.-Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b82eda27c7a8ba20997189beff28006acf5043c654ddff83e95808a64f923a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Electrochemical techniques</topic><topic>Electrodeposition</topic><topic>Field emission microscopy</topic><topic>Hydrogen peroxide</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Nanostructures</topic><topic>Nanotubes</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Synthesis</topic><topic>Transmission electron microscopy</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yousefi, E.</creatorcontrib><creatorcontrib>Dolati, A.</creatorcontrib><creatorcontrib>Imanieh, I.</creatorcontrib><creatorcontrib>Yashiro, H.</creatorcontrib><creatorcontrib>Kure-Chu, S.-Z.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yousefi, E.</au><au>Dolati, A.</au><au>Imanieh, I.</au><au>Yashiro, H.</au><au>Kure-Chu, S.-Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic study and growth behavior of template-based electrodeposited platinum nanotubes controlled by overpotential</atitle><jtitle>Materials chemistry and physics</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>187</volume><spage>141</spage><epage>148</epage><pages>141-148</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>Platinum nanotubes (PtNTs) are fabricated by potentiostatic electrodeposition at various overpotentials (−200 up to −400 mV versus SCE) in polycarbonate templates (PCTs) with pore diameter of 200 nm in a solution containing 5 mM H2PtCl6 and 0.1 M H2SO4. The synthesized PtNTs are characterized by field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The electrochemical growth mechanism within nanoscopic pores and the relationship between morphological variations and kinetic parameters are investigated for the first time. It is shown that more porous structure of nanotubes forms at high overpotentials possibly due to preferably nucleation. The kinetics of electrodeposition process is studied by electrochemical techniques such as voltammetry and chronoamperometry. The linear diffusion coefficient at the early stage of the deposition and the radial diffusion coefficients at steady state regime are calculated as D = 8.39 × 10−5 and 2.33–13.26 × 10−8 cm2/s, respectively. The synthesized PtNT electrode is tested as electrocatalyst for hydrogen peroxide oxidation in phosphate buffer solution (PBS) and shows a sensitivity as high as 2.89 mA per 1 μM that is an indication to its enlarged electrochemical surface area. •PtNT is electrodeposited in a 3-aminopropyltrimethoxysilane-modified PCT.•The electrochemical growth mechanism within nanoscopic pores is discussed.•The kinetics of PtNT electrodeposition is studied based on models for UME arrays.•Relationship between morphological variations vs. kinetic parameters is studied.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2016.11.058</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2017-02, Vol.187, p.141-148
issn 0254-0584
1879-3312
language eng
recordid cdi_proquest_journals_1939229587
source ScienceDirect Freedom Collection 2022-2024
subjects Diffusion
Diffusion coefficient
Electrochemical techniques
Electrodeposition
Field emission microscopy
Hydrogen peroxide
Kinetics
Mathematical analysis
Nanostructures
Nanotubes
Oxidation
Platinum
Synthesis
Transmission electron microscopy
Voltammetry
title Kinetic study and growth behavior of template-based electrodeposited platinum nanotubes controlled by overpotential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20study%20and%20growth%20behavior%20of%20template-based%20electrodeposited%20platinum%20nanotubes%20controlled%20by%20overpotential&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Yousefi,%20E.&rft.date=2017-02-01&rft.volume=187&rft.spage=141&rft.epage=148&rft.pages=141-148&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2016.11.058&rft_dat=%3Cproquest_cross%3E1939229587%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-b82eda27c7a8ba20997189beff28006acf5043c654ddff83e95808a64f923a4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1939229587&rft_id=info:pmid/&rfr_iscdi=true