Loading…

13C metabolic flux profiling of Pichia pastoris grown in aerobic batch cultures on glucose revealed high relative anabolic use of TCA cycle and limited incorporation of provided precursors of branched‐chain amino acids

Carbon metabolism of Crabtree‐negative yeast Pichia pastoris was profiled using 13C nuclear magnetic resonance (NMR) to delineate regulation during exponential growth and to study the import of two precursors for branched‐chain amino acid biosynthesis, α‐ketoisovalerate and α‐ketobutyrate. Cells wer...

Full description

Saved in:
Bibliographic Details
Published in:The FEBS journal 2017-09, Vol.284 (18), p.3100-3113
Main Authors: Zhang, Meng, Yu, Xiao‐Wei, Xu, Yan, Jouhten, Paula, Swapna, Gurla V. T., Glaser, Ralf W., Hunt, John F., Montelione, Gaetano T., Maaheimo, Hannu, Szyperski, Thomas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3113
container_issue 18
container_start_page 3100
container_title The FEBS journal
container_volume 284
creator Zhang, Meng
Yu, Xiao‐Wei
Xu, Yan
Jouhten, Paula
Swapna, Gurla V. T.
Glaser, Ralf W.
Hunt, John F.
Montelione, Gaetano T.
Maaheimo, Hannu
Szyperski, Thomas
description Carbon metabolism of Crabtree‐negative yeast Pichia pastoris was profiled using 13C nuclear magnetic resonance (NMR) to delineate regulation during exponential growth and to study the import of two precursors for branched‐chain amino acid biosynthesis, α‐ketoisovalerate and α‐ketobutyrate. Cells were grown in aerobic batch cultures containing (a) only glucose, (b) glucose along with the precursors, or (c) glucose and Val. The study provided the following new insights. First, 13C flux ratio analyses of central metabolism reveal an unexpectedly high anaplerotic supply of the tricarboxylic acid cycle for a Crabtree‐negative yeast, and show that a substantial fraction of glucose catabolism proceeds through the pentose phosphate pathway. A comparison with previous flux ratio analyses for batch cultures of Crabtree‐negative Pichia stipitis and Crabtree‐positive Saccharomyces cerevisiae indicate that the overall regulation of central carbon metabolism in P. pastoris is intermediate in between P. stipitis and S. cerevisiae. Second, excess α‐ketoisovalerate in the medium is not transported into the cytoplasm indicating that P. pastoris lacks a suitable transporter. In contrast, excess Val is efficiently taken up and largely fulfills demands for both Val and Leu for protein synthesis. Third, excess α‐ketobutyrate is transported into the mitochondria for Ile biosynthesis. However, the import does not efficiently inhibit the synthesis of α‐ketobutyrate from pyruvate indicating that P. pastoris has not been optimized evolutionarily to take full advantage of this carbon source. These findings have direct implications for preparing uniformly 2H,13C,15N‐labeled proteins containing protonated Ile, Val, and Leu methyl groups in P. pastoris for NMR‐based structural biology. Enzymes Acetohydroxy acid isomeroreductase (EC 1.1.1.86), branched‐chain amino acid aminotransferase (BCAT, EC 2.6.1.42), fumarase (EC 4.2.1.2), malic enzyme (EC 1.1.1.39/1.1.1.40), phosphoenolpyruvate carboxykinase (EC 4.1.1.49), pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC 2.7.1.40), l‐serine hydroxymethyltransferase (EC 2.1.2.1), threonine aldolase (EC 4.1.2.5), threonine dehydratase (EC 4.3.1.19); transketolase (EC 2.2.1.1), transaldolase (EC 2.2.1.2). 13C NMR‐based metabolic profiling of the yeast Pichia pastoris in aerobic batch cultures containing glucose and precursors of branched‐chain amino acids reveals distinct features of the overall regulation of central carbon metabolism, which is
doi_str_mv 10.1111/febs.14180
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1939785512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1939785512</sourcerecordid><originalsourceid>FETCH-LOGICAL-j1720-4c2de1853c2ee16b79277efba4baed9eadb62c1863a67e3d9fce0329e9b647523</originalsourceid><addsrcrecordid>eNo9UctOHDEQHEWJFEJyyRe0lPOS8XhePsIKCBJSIoVIuY386Nnpldce7JmFvfEJfCAnviQeQOlLt91VXSVVln1l-QlL9b1HFU9Yydr8XXbEmrJYlXXVvv8_l38_Zp9i3OY5r0ohjrInxteww0kqb0lDb-d7GIPvyZLbgO_hF-mBJIwyTj5QhE3wdw7IgcTgVaIoOekB9GynOWAE72BjZ-0jQsA9SosGBtoM6WXlRHsE6d7E5oRJCjfrU9AHbZeNAUs7mhKHnPZh9CFx0skES672ZNJmDKjnEH2Iy7cK0ukBzfPDox7k4mtHzoPUZOLn7EMvbcQvb_04-3NxfrP-sbr-eXm1Pr1ebVlT5KtSFwZZW3FdILJaNaJoGuyVLJVEI1AaVReatTWXdYPciF5jzguBQtVlUxX8OPv2ejd5vJ0xTt3Wz8ElyY4JLpq2qtiCYq-oO7J46MZAOxkOHcu7Jbpuia57ia67OD_7_TLxf3S-lXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939785512</pqid></control><display><type>article</type><title>13C metabolic flux profiling of Pichia pastoris grown in aerobic batch cultures on glucose revealed high relative anabolic use of TCA cycle and limited incorporation of provided precursors of branched‐chain amino acids</title><source>Wiley</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Zhang, Meng ; Yu, Xiao‐Wei ; Xu, Yan ; Jouhten, Paula ; Swapna, Gurla V. T. ; Glaser, Ralf W. ; Hunt, John F. ; Montelione, Gaetano T. ; Maaheimo, Hannu ; Szyperski, Thomas</creator><creatorcontrib>Zhang, Meng ; Yu, Xiao‐Wei ; Xu, Yan ; Jouhten, Paula ; Swapna, Gurla V. T. ; Glaser, Ralf W. ; Hunt, John F. ; Montelione, Gaetano T. ; Maaheimo, Hannu ; Szyperski, Thomas</creatorcontrib><description>Carbon metabolism of Crabtree‐negative yeast Pichia pastoris was profiled using 13C nuclear magnetic resonance (NMR) to delineate regulation during exponential growth and to study the import of two precursors for branched‐chain amino acid biosynthesis, α‐ketoisovalerate and α‐ketobutyrate. Cells were grown in aerobic batch cultures containing (a) only glucose, (b) glucose along with the precursors, or (c) glucose and Val. The study provided the following new insights. First, 13C flux ratio analyses of central metabolism reveal an unexpectedly high anaplerotic supply of the tricarboxylic acid cycle for a Crabtree‐negative yeast, and show that a substantial fraction of glucose catabolism proceeds through the pentose phosphate pathway. A comparison with previous flux ratio analyses for batch cultures of Crabtree‐negative Pichia stipitis and Crabtree‐positive Saccharomyces cerevisiae indicate that the overall regulation of central carbon metabolism in P. pastoris is intermediate in between P. stipitis and S. cerevisiae. Second, excess α‐ketoisovalerate in the medium is not transported into the cytoplasm indicating that P. pastoris lacks a suitable transporter. In contrast, excess Val is efficiently taken up and largely fulfills demands for both Val and Leu for protein synthesis. Third, excess α‐ketobutyrate is transported into the mitochondria for Ile biosynthesis. However, the import does not efficiently inhibit the synthesis of α‐ketobutyrate from pyruvate indicating that P. pastoris has not been optimized evolutionarily to take full advantage of this carbon source. These findings have direct implications for preparing uniformly 2H,13C,15N‐labeled proteins containing protonated Ile, Val, and Leu methyl groups in P. pastoris for NMR‐based structural biology. Enzymes Acetohydroxy acid isomeroreductase (EC 1.1.1.86), branched‐chain amino acid aminotransferase (BCAT, EC 2.6.1.42), fumarase (EC 4.2.1.2), malic enzyme (EC 1.1.1.39/1.1.1.40), phosphoenolpyruvate carboxykinase (EC 4.1.1.49), pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC 2.7.1.40), l‐serine hydroxymethyltransferase (EC 2.1.2.1), threonine aldolase (EC 4.1.2.5), threonine dehydratase (EC 4.3.1.19); transketolase (EC 2.2.1.1), transaldolase (EC 2.2.1.2). 13C NMR‐based metabolic profiling of the yeast Pichia pastoris in aerobic batch cultures containing glucose and precursors of branched‐chain amino acids reveals distinct features of the overall regulation of central carbon metabolism, which is intermediate between Pichia stipitis and Saccharomyces cerevisiae, as well as insights into limitations of α‐ketoisovalerate and α‐ketobutyrate transport from the medium into cytosol and mitochondria.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.14180</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>13C NMR ; Aldolase ; Amino acids ; Biosynthesis ; Carbon ; Carbon 13 ; Carbon sources ; Catabolism ; Chain branching ; Chains ; Cytoplasm ; Dehydration ; Enzymes ; Fluctuations ; Flux ; Fumarase ; Glucose ; Imports ; Komagatella phaffi ; L-Serine ; Malic enzyme ; Metabolic Flux ; Metabolism ; Metabolite transport ; Mitochondria ; NMR ; Nuclear magnetic resonance ; Pentose ; Pentose phosphate pathway ; Phosphates ; Pichia pastoris ; Protein biosynthesis ; Protein synthesis ; Proteins ; Pyruvate carboxylase ; Pyruvate kinase ; Pyruvic acid ; Threonine aldolase ; Threonine dehydratase ; Transaldolase ; Transketolase ; Tricarboxylic acid cycle ; Yeast</subject><ispartof>The FEBS journal, 2017-09, Vol.284 (18), p.3100-3113</ispartof><rights>2017 Federation of European Biochemical Societies</rights><rights>Copyright © 2017 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Yu, Xiao‐Wei</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Jouhten, Paula</creatorcontrib><creatorcontrib>Swapna, Gurla V. T.</creatorcontrib><creatorcontrib>Glaser, Ralf W.</creatorcontrib><creatorcontrib>Hunt, John F.</creatorcontrib><creatorcontrib>Montelione, Gaetano T.</creatorcontrib><creatorcontrib>Maaheimo, Hannu</creatorcontrib><creatorcontrib>Szyperski, Thomas</creatorcontrib><title>13C metabolic flux profiling of Pichia pastoris grown in aerobic batch cultures on glucose revealed high relative anabolic use of TCA cycle and limited incorporation of provided precursors of branched‐chain amino acids</title><title>The FEBS journal</title><description>Carbon metabolism of Crabtree‐negative yeast Pichia pastoris was profiled using 13C nuclear magnetic resonance (NMR) to delineate regulation during exponential growth and to study the import of two precursors for branched‐chain amino acid biosynthesis, α‐ketoisovalerate and α‐ketobutyrate. Cells were grown in aerobic batch cultures containing (a) only glucose, (b) glucose along with the precursors, or (c) glucose and Val. The study provided the following new insights. First, 13C flux ratio analyses of central metabolism reveal an unexpectedly high anaplerotic supply of the tricarboxylic acid cycle for a Crabtree‐negative yeast, and show that a substantial fraction of glucose catabolism proceeds through the pentose phosphate pathway. A comparison with previous flux ratio analyses for batch cultures of Crabtree‐negative Pichia stipitis and Crabtree‐positive Saccharomyces cerevisiae indicate that the overall regulation of central carbon metabolism in P. pastoris is intermediate in between P. stipitis and S. cerevisiae. Second, excess α‐ketoisovalerate in the medium is not transported into the cytoplasm indicating that P. pastoris lacks a suitable transporter. In contrast, excess Val is efficiently taken up and largely fulfills demands for both Val and Leu for protein synthesis. Third, excess α‐ketobutyrate is transported into the mitochondria for Ile biosynthesis. However, the import does not efficiently inhibit the synthesis of α‐ketobutyrate from pyruvate indicating that P. pastoris has not been optimized evolutionarily to take full advantage of this carbon source. These findings have direct implications for preparing uniformly 2H,13C,15N‐labeled proteins containing protonated Ile, Val, and Leu methyl groups in P. pastoris for NMR‐based structural biology. Enzymes Acetohydroxy acid isomeroreductase (EC 1.1.1.86), branched‐chain amino acid aminotransferase (BCAT, EC 2.6.1.42), fumarase (EC 4.2.1.2), malic enzyme (EC 1.1.1.39/1.1.1.40), phosphoenolpyruvate carboxykinase (EC 4.1.1.49), pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC 2.7.1.40), l‐serine hydroxymethyltransferase (EC 2.1.2.1), threonine aldolase (EC 4.1.2.5), threonine dehydratase (EC 4.3.1.19); transketolase (EC 2.2.1.1), transaldolase (EC 2.2.1.2). 13C NMR‐based metabolic profiling of the yeast Pichia pastoris in aerobic batch cultures containing glucose and precursors of branched‐chain amino acids reveals distinct features of the overall regulation of central carbon metabolism, which is intermediate between Pichia stipitis and Saccharomyces cerevisiae, as well as insights into limitations of α‐ketoisovalerate and α‐ketobutyrate transport from the medium into cytosol and mitochondria.</description><subject>13C NMR</subject><subject>Aldolase</subject><subject>Amino acids</subject><subject>Biosynthesis</subject><subject>Carbon</subject><subject>Carbon 13</subject><subject>Carbon sources</subject><subject>Catabolism</subject><subject>Chain branching</subject><subject>Chains</subject><subject>Cytoplasm</subject><subject>Dehydration</subject><subject>Enzymes</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>Fumarase</subject><subject>Glucose</subject><subject>Imports</subject><subject>Komagatella phaffi</subject><subject>L-Serine</subject><subject>Malic enzyme</subject><subject>Metabolic Flux</subject><subject>Metabolism</subject><subject>Metabolite transport</subject><subject>Mitochondria</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Pentose</subject><subject>Pentose phosphate pathway</subject><subject>Phosphates</subject><subject>Pichia pastoris</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Pyruvate carboxylase</subject><subject>Pyruvate kinase</subject><subject>Pyruvic acid</subject><subject>Threonine aldolase</subject><subject>Threonine dehydratase</subject><subject>Transaldolase</subject><subject>Transketolase</subject><subject>Tricarboxylic acid cycle</subject><subject>Yeast</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9UctOHDEQHEWJFEJyyRe0lPOS8XhePsIKCBJSIoVIuY386Nnpldce7JmFvfEJfCAnviQeQOlLt91VXSVVln1l-QlL9b1HFU9Yydr8XXbEmrJYlXXVvv8_l38_Zp9i3OY5r0ohjrInxteww0kqb0lDb-d7GIPvyZLbgO_hF-mBJIwyTj5QhE3wdw7IgcTgVaIoOekB9GynOWAE72BjZ-0jQsA9SosGBtoM6WXlRHsE6d7E5oRJCjfrU9AHbZeNAUs7mhKHnPZh9CFx0skES672ZNJmDKjnEH2Iy7cK0ukBzfPDox7k4mtHzoPUZOLn7EMvbcQvb_04-3NxfrP-sbr-eXm1Pr1ebVlT5KtSFwZZW3FdILJaNaJoGuyVLJVEI1AaVReatTWXdYPciF5jzguBQtVlUxX8OPv2ejd5vJ0xTt3Wz8ElyY4JLpq2qtiCYq-oO7J46MZAOxkOHcu7Jbpuia57ia67OD_7_TLxf3S-lXw</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Zhang, Meng</creator><creator>Yu, Xiao‐Wei</creator><creator>Xu, Yan</creator><creator>Jouhten, Paula</creator><creator>Swapna, Gurla V. T.</creator><creator>Glaser, Ralf W.</creator><creator>Hunt, John F.</creator><creator>Montelione, Gaetano T.</creator><creator>Maaheimo, Hannu</creator><creator>Szyperski, Thomas</creator><general>Blackwell Publishing Ltd</general><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201709</creationdate><title>13C metabolic flux profiling of Pichia pastoris grown in aerobic batch cultures on glucose revealed high relative anabolic use of TCA cycle and limited incorporation of provided precursors of branched‐chain amino acids</title><author>Zhang, Meng ; Yu, Xiao‐Wei ; Xu, Yan ; Jouhten, Paula ; Swapna, Gurla V. T. ; Glaser, Ralf W. ; Hunt, John F. ; Montelione, Gaetano T. ; Maaheimo, Hannu ; Szyperski, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j1720-4c2de1853c2ee16b79277efba4baed9eadb62c1863a67e3d9fce0329e9b647523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13C NMR</topic><topic>Aldolase</topic><topic>Amino acids</topic><topic>Biosynthesis</topic><topic>Carbon</topic><topic>Carbon 13</topic><topic>Carbon sources</topic><topic>Catabolism</topic><topic>Chain branching</topic><topic>Chains</topic><topic>Cytoplasm</topic><topic>Dehydration</topic><topic>Enzymes</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>Fumarase</topic><topic>Glucose</topic><topic>Imports</topic><topic>Komagatella phaffi</topic><topic>L-Serine</topic><topic>Malic enzyme</topic><topic>Metabolic Flux</topic><topic>Metabolism</topic><topic>Metabolite transport</topic><topic>Mitochondria</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Pentose</topic><topic>Pentose phosphate pathway</topic><topic>Phosphates</topic><topic>Pichia pastoris</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Pyruvate carboxylase</topic><topic>Pyruvate kinase</topic><topic>Pyruvic acid</topic><topic>Threonine aldolase</topic><topic>Threonine dehydratase</topic><topic>Transaldolase</topic><topic>Transketolase</topic><topic>Tricarboxylic acid cycle</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Yu, Xiao‐Wei</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Jouhten, Paula</creatorcontrib><creatorcontrib>Swapna, Gurla V. T.</creatorcontrib><creatorcontrib>Glaser, Ralf W.</creatorcontrib><creatorcontrib>Hunt, John F.</creatorcontrib><creatorcontrib>Montelione, Gaetano T.</creatorcontrib><creatorcontrib>Maaheimo, Hannu</creatorcontrib><creatorcontrib>Szyperski, Thomas</creatorcontrib><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Meng</au><au>Yu, Xiao‐Wei</au><au>Xu, Yan</au><au>Jouhten, Paula</au><au>Swapna, Gurla V. T.</au><au>Glaser, Ralf W.</au><au>Hunt, John F.</au><au>Montelione, Gaetano T.</au><au>Maaheimo, Hannu</au><au>Szyperski, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>13C metabolic flux profiling of Pichia pastoris grown in aerobic batch cultures on glucose revealed high relative anabolic use of TCA cycle and limited incorporation of provided precursors of branched‐chain amino acids</atitle><jtitle>The FEBS journal</jtitle><date>2017-09</date><risdate>2017</risdate><volume>284</volume><issue>18</issue><spage>3100</spage><epage>3113</epage><pages>3100-3113</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Carbon metabolism of Crabtree‐negative yeast Pichia pastoris was profiled using 13C nuclear magnetic resonance (NMR) to delineate regulation during exponential growth and to study the import of two precursors for branched‐chain amino acid biosynthesis, α‐ketoisovalerate and α‐ketobutyrate. Cells were grown in aerobic batch cultures containing (a) only glucose, (b) glucose along with the precursors, or (c) glucose and Val. The study provided the following new insights. First, 13C flux ratio analyses of central metabolism reveal an unexpectedly high anaplerotic supply of the tricarboxylic acid cycle for a Crabtree‐negative yeast, and show that a substantial fraction of glucose catabolism proceeds through the pentose phosphate pathway. A comparison with previous flux ratio analyses for batch cultures of Crabtree‐negative Pichia stipitis and Crabtree‐positive Saccharomyces cerevisiae indicate that the overall regulation of central carbon metabolism in P. pastoris is intermediate in between P. stipitis and S. cerevisiae. Second, excess α‐ketoisovalerate in the medium is not transported into the cytoplasm indicating that P. pastoris lacks a suitable transporter. In contrast, excess Val is efficiently taken up and largely fulfills demands for both Val and Leu for protein synthesis. Third, excess α‐ketobutyrate is transported into the mitochondria for Ile biosynthesis. However, the import does not efficiently inhibit the synthesis of α‐ketobutyrate from pyruvate indicating that P. pastoris has not been optimized evolutionarily to take full advantage of this carbon source. These findings have direct implications for preparing uniformly 2H,13C,15N‐labeled proteins containing protonated Ile, Val, and Leu methyl groups in P. pastoris for NMR‐based structural biology. Enzymes Acetohydroxy acid isomeroreductase (EC 1.1.1.86), branched‐chain amino acid aminotransferase (BCAT, EC 2.6.1.42), fumarase (EC 4.2.1.2), malic enzyme (EC 1.1.1.39/1.1.1.40), phosphoenolpyruvate carboxykinase (EC 4.1.1.49), pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC 2.7.1.40), l‐serine hydroxymethyltransferase (EC 2.1.2.1), threonine aldolase (EC 4.1.2.5), threonine dehydratase (EC 4.3.1.19); transketolase (EC 2.2.1.1), transaldolase (EC 2.2.1.2). 13C NMR‐based metabolic profiling of the yeast Pichia pastoris in aerobic batch cultures containing glucose and precursors of branched‐chain amino acids reveals distinct features of the overall regulation of central carbon metabolism, which is intermediate between Pichia stipitis and Saccharomyces cerevisiae, as well as insights into limitations of α‐ketoisovalerate and α‐ketobutyrate transport from the medium into cytosol and mitochondria.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/febs.14180</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2017-09, Vol.284 (18), p.3100-3113
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_journals_1939785512
source Wiley; Full-Text Journals in Chemistry (Open access)
subjects 13C NMR
Aldolase
Amino acids
Biosynthesis
Carbon
Carbon 13
Carbon sources
Catabolism
Chain branching
Chains
Cytoplasm
Dehydration
Enzymes
Fluctuations
Flux
Fumarase
Glucose
Imports
Komagatella phaffi
L-Serine
Malic enzyme
Metabolic Flux
Metabolism
Metabolite transport
Mitochondria
NMR
Nuclear magnetic resonance
Pentose
Pentose phosphate pathway
Phosphates
Pichia pastoris
Protein biosynthesis
Protein synthesis
Proteins
Pyruvate carboxylase
Pyruvate kinase
Pyruvic acid
Threonine aldolase
Threonine dehydratase
Transaldolase
Transketolase
Tricarboxylic acid cycle
Yeast
title 13C metabolic flux profiling of Pichia pastoris grown in aerobic batch cultures on glucose revealed high relative anabolic use of TCA cycle and limited incorporation of provided precursors of branched‐chain amino acids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=13C%20metabolic%20flux%20profiling%20of%20Pichia%20pastoris%20grown%20in%20aerobic%20batch%20cultures%20on%20glucose%20revealed%20high%20relative%20anabolic%20use%20of%20TCA%20cycle%20and%20limited%20incorporation%20of%20provided%20precursors%20of%20branched%E2%80%90chain%20amino%20acids&rft.jtitle=The%20FEBS%20journal&rft.au=Zhang,%20Meng&rft.date=2017-09&rft.volume=284&rft.issue=18&rft.spage=3100&rft.epage=3113&rft.pages=3100-3113&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.14180&rft_dat=%3Cproquest_wiley%3E1939785512%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j1720-4c2de1853c2ee16b79277efba4baed9eadb62c1863a67e3d9fce0329e9b647523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1939785512&rft_id=info:pmid/&rfr_iscdi=true