Loading…

Defect structure‐electrical property relationship in Mn‐doped calcium strontium titanate dielectric ceramics

Ca0.6Sr0.4TiO3 (CST) ceramics with different amounts of Mn dopant (0‐2.0 mol%) were prepared by solid‐state reaction method. The electric field and temperature stability of energy storage performance was found to be greatly enhanced with moderate doped level of 0.5 mol%. The dielectric loss‐frequenc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2017-10, Vol.100 (10), p.4638-4648
Main Authors: Zhang, Lin, Hao, Hua, Zhang, Shujun, Lanagan, Michael T., Yao, Zhonghua, Xu, Qi, Xie, Juan, Zhou, Jing, Cao, Minghe, Liu, Hanxing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3014-750c996823d47ad95c850dbe4a83e7788da95e99a330bcc72ad897b2e3aec7ca3
cites cdi_FETCH-LOGICAL-c3014-750c996823d47ad95c850dbe4a83e7788da95e99a330bcc72ad897b2e3aec7ca3
container_end_page 4648
container_issue 10
container_start_page 4638
container_title Journal of the American Ceramic Society
container_volume 100
creator Zhang, Lin
Hao, Hua
Zhang, Shujun
Lanagan, Michael T.
Yao, Zhonghua
Xu, Qi
Xie, Juan
Zhou, Jing
Cao, Minghe
Liu, Hanxing
description Ca0.6Sr0.4TiO3 (CST) ceramics with different amounts of Mn dopant (0‐2.0 mol%) were prepared by solid‐state reaction method. The electric field and temperature stability of energy storage performance was found to be greatly enhanced with moderate doped level of 0.5 mol%. The dielectric loss‐frequency spectra revealed the existence and evolution of defect dipoles at elevated temperature, which was confirmed directly by electron paramagnetic resonance (EPR) spectra. The response of defect dipoles was characterized by thermally stimulated depolarization current (TSDC), where the activation energy and the concentration evolution of defect dipoles were calculated, with the highest values observed for 0.5% doped samples. The dissociation of defect dipoles and the movement of free VO·· were analyzed by high‐temperature impedance spectra analysis, with the activation energy of 1.04‐1.60 eV, and 0.5% doped samples also demonstrated the highest Ea. The relationship between microscopic defect structure and macroscopic electrical behavior was established in this work.
doi_str_mv 10.1111/jace.14994
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1940819447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940819447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3014-750c996823d47ad95c850dbe4a83e7788da95e99a330bcc72ad897b2e3aec7ca3</originalsourceid><addsrcrecordid>eNp9kMtOxCAUhonRxHF04xOQuDPpCC0dYDkZx1vGuNE1oXAmMum0FWjM7HwEn9EnkVrdyuJwLt_5CT9C55TMaDpXW21gRpmU7ABNaFnSLJd0fogmhJA84yInx-gkhG0qqRRsgrpr2ICJOETfm9h7-Pr4hDp1vDO6xp1vO_Bxjz3UOrq2Ca-uw67Bj00CbRpanDjj-t0g0TZxyKKLutERsHV_WtiA1ztnwik62ug6wNnvPUUvN6vn5V22frq9Xy7WmSkIZRkviZFyLvLCMq6tLI0oia2AaVEA50JYLUuQUhcFqYzhubZC8iqHQoPhRhdTdDHqpi-89RCi2ra9b9KTikpGRAqMJ-pypIxvQ_CwUZ13O-33ihI1OKoGR9WPowmmI_zuatj_Q6qHxXI17nwDbOd9cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940819447</pqid></control><display><type>article</type><title>Defect structure‐electrical property relationship in Mn‐doped calcium strontium titanate dielectric ceramics</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhang, Lin ; Hao, Hua ; Zhang, Shujun ; Lanagan, Michael T. ; Yao, Zhonghua ; Xu, Qi ; Xie, Juan ; Zhou, Jing ; Cao, Minghe ; Liu, Hanxing</creator><creatorcontrib>Zhang, Lin ; Hao, Hua ; Zhang, Shujun ; Lanagan, Michael T. ; Yao, Zhonghua ; Xu, Qi ; Xie, Juan ; Zhou, Jing ; Cao, Minghe ; Liu, Hanxing</creatorcontrib><description>Ca0.6Sr0.4TiO3 (CST) ceramics with different amounts of Mn dopant (0‐2.0 mol%) were prepared by solid‐state reaction method. The electric field and temperature stability of energy storage performance was found to be greatly enhanced with moderate doped level of 0.5 mol%. The dielectric loss‐frequency spectra revealed the existence and evolution of defect dipoles at elevated temperature, which was confirmed directly by electron paramagnetic resonance (EPR) spectra. The response of defect dipoles was characterized by thermally stimulated depolarization current (TSDC), where the activation energy and the concentration evolution of defect dipoles were calculated, with the highest values observed for 0.5% doped samples. The dissociation of defect dipoles and the movement of free VO·· were analyzed by high‐temperature impedance spectra analysis, with the activation energy of 1.04‐1.60 eV, and 0.5% doped samples also demonstrated the highest Ea. The relationship between microscopic defect structure and macroscopic electrical behavior was established in this work.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14994</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Activation energy ; Calcium titanate ; Ceramics ; Defects ; Dielectric loss ; dielectric materials/properties ; Dielectric properties ; Dipoles ; electrical properties ; Electron paramagnetic resonance ; Energy storage ; Evolution ; High temperature ; impedance spectroscopy ; Manganese ; Spectra ; Strontium titanates ; Thermally stimulated depolarization current ; vacancies</subject><ispartof>Journal of the American Ceramic Society, 2017-10, Vol.100 (10), p.4638-4648</ispartof><rights>2017 The American Ceramic Society</rights><rights>2017 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3014-750c996823d47ad95c850dbe4a83e7788da95e99a330bcc72ad897b2e3aec7ca3</citedby><cites>FETCH-LOGICAL-c3014-750c996823d47ad95c850dbe4a83e7788da95e99a330bcc72ad897b2e3aec7ca3</cites><orcidid>0000-0003-2597-4824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Hao, Hua</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><creatorcontrib>Lanagan, Michael T.</creatorcontrib><creatorcontrib>Yao, Zhonghua</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><creatorcontrib>Xie, Juan</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Cao, Minghe</creatorcontrib><creatorcontrib>Liu, Hanxing</creatorcontrib><title>Defect structure‐electrical property relationship in Mn‐doped calcium strontium titanate dielectric ceramics</title><title>Journal of the American Ceramic Society</title><description>Ca0.6Sr0.4TiO3 (CST) ceramics with different amounts of Mn dopant (0‐2.0 mol%) were prepared by solid‐state reaction method. The electric field and temperature stability of energy storage performance was found to be greatly enhanced with moderate doped level of 0.5 mol%. The dielectric loss‐frequency spectra revealed the existence and evolution of defect dipoles at elevated temperature, which was confirmed directly by electron paramagnetic resonance (EPR) spectra. The response of defect dipoles was characterized by thermally stimulated depolarization current (TSDC), where the activation energy and the concentration evolution of defect dipoles were calculated, with the highest values observed for 0.5% doped samples. The dissociation of defect dipoles and the movement of free VO·· were analyzed by high‐temperature impedance spectra analysis, with the activation energy of 1.04‐1.60 eV, and 0.5% doped samples also demonstrated the highest Ea. The relationship between microscopic defect structure and macroscopic electrical behavior was established in this work.</description><subject>Activation energy</subject><subject>Calcium titanate</subject><subject>Ceramics</subject><subject>Defects</subject><subject>Dielectric loss</subject><subject>dielectric materials/properties</subject><subject>Dielectric properties</subject><subject>Dipoles</subject><subject>electrical properties</subject><subject>Electron paramagnetic resonance</subject><subject>Energy storage</subject><subject>Evolution</subject><subject>High temperature</subject><subject>impedance spectroscopy</subject><subject>Manganese</subject><subject>Spectra</subject><subject>Strontium titanates</subject><subject>Thermally stimulated depolarization current</subject><subject>vacancies</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOxCAUhonRxHF04xOQuDPpCC0dYDkZx1vGuNE1oXAmMum0FWjM7HwEn9EnkVrdyuJwLt_5CT9C55TMaDpXW21gRpmU7ABNaFnSLJd0fogmhJA84yInx-gkhG0qqRRsgrpr2ICJOETfm9h7-Pr4hDp1vDO6xp1vO_Bxjz3UOrq2Ca-uw67Bj00CbRpanDjj-t0g0TZxyKKLutERsHV_WtiA1ztnwik62ug6wNnvPUUvN6vn5V22frq9Xy7WmSkIZRkviZFyLvLCMq6tLI0oia2AaVEA50JYLUuQUhcFqYzhubZC8iqHQoPhRhdTdDHqpi-89RCi2ra9b9KTikpGRAqMJ-pypIxvQ_CwUZ13O-33ihI1OKoGR9WPowmmI_zuatj_Q6qHxXI17nwDbOd9cQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Zhang, Lin</creator><creator>Hao, Hua</creator><creator>Zhang, Shujun</creator><creator>Lanagan, Michael T.</creator><creator>Yao, Zhonghua</creator><creator>Xu, Qi</creator><creator>Xie, Juan</creator><creator>Zhou, Jing</creator><creator>Cao, Minghe</creator><creator>Liu, Hanxing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2597-4824</orcidid></search><sort><creationdate>201710</creationdate><title>Defect structure‐electrical property relationship in Mn‐doped calcium strontium titanate dielectric ceramics</title><author>Zhang, Lin ; Hao, Hua ; Zhang, Shujun ; Lanagan, Michael T. ; Yao, Zhonghua ; Xu, Qi ; Xie, Juan ; Zhou, Jing ; Cao, Minghe ; Liu, Hanxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3014-750c996823d47ad95c850dbe4a83e7788da95e99a330bcc72ad897b2e3aec7ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Calcium titanate</topic><topic>Ceramics</topic><topic>Defects</topic><topic>Dielectric loss</topic><topic>dielectric materials/properties</topic><topic>Dielectric properties</topic><topic>Dipoles</topic><topic>electrical properties</topic><topic>Electron paramagnetic resonance</topic><topic>Energy storage</topic><topic>Evolution</topic><topic>High temperature</topic><topic>impedance spectroscopy</topic><topic>Manganese</topic><topic>Spectra</topic><topic>Strontium titanates</topic><topic>Thermally stimulated depolarization current</topic><topic>vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Hao, Hua</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><creatorcontrib>Lanagan, Michael T.</creatorcontrib><creatorcontrib>Yao, Zhonghua</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><creatorcontrib>Xie, Juan</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Cao, Minghe</creatorcontrib><creatorcontrib>Liu, Hanxing</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lin</au><au>Hao, Hua</au><au>Zhang, Shujun</au><au>Lanagan, Michael T.</au><au>Yao, Zhonghua</au><au>Xu, Qi</au><au>Xie, Juan</au><au>Zhou, Jing</au><au>Cao, Minghe</au><au>Liu, Hanxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect structure‐electrical property relationship in Mn‐doped calcium strontium titanate dielectric ceramics</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2017-10</date><risdate>2017</risdate><volume>100</volume><issue>10</issue><spage>4638</spage><epage>4648</epage><pages>4638-4648</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Ca0.6Sr0.4TiO3 (CST) ceramics with different amounts of Mn dopant (0‐2.0 mol%) were prepared by solid‐state reaction method. The electric field and temperature stability of energy storage performance was found to be greatly enhanced with moderate doped level of 0.5 mol%. The dielectric loss‐frequency spectra revealed the existence and evolution of defect dipoles at elevated temperature, which was confirmed directly by electron paramagnetic resonance (EPR) spectra. The response of defect dipoles was characterized by thermally stimulated depolarization current (TSDC), where the activation energy and the concentration evolution of defect dipoles were calculated, with the highest values observed for 0.5% doped samples. The dissociation of defect dipoles and the movement of free VO·· were analyzed by high‐temperature impedance spectra analysis, with the activation energy of 1.04‐1.60 eV, and 0.5% doped samples also demonstrated the highest Ea. The relationship between microscopic defect structure and macroscopic electrical behavior was established in this work.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.14994</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2597-4824</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2017-10, Vol.100 (10), p.4638-4648
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_1940819447
source Wiley-Blackwell Read & Publish Collection
subjects Activation energy
Calcium titanate
Ceramics
Defects
Dielectric loss
dielectric materials/properties
Dielectric properties
Dipoles
electrical properties
Electron paramagnetic resonance
Energy storage
Evolution
High temperature
impedance spectroscopy
Manganese
Spectra
Strontium titanates
Thermally stimulated depolarization current
vacancies
title Defect structure‐electrical property relationship in Mn‐doped calcium strontium titanate dielectric ceramics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20structure%E2%80%90electrical%20property%20relationship%20in%20Mn%E2%80%90doped%20calcium%20strontium%20titanate%20dielectric%20ceramics&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Zhang,%20Lin&rft.date=2017-10&rft.volume=100&rft.issue=10&rft.spage=4638&rft.epage=4648&rft.pages=4638-4648&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.14994&rft_dat=%3Cproquest_cross%3E1940819447%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3014-750c996823d47ad95c850dbe4a83e7788da95e99a330bcc72ad897b2e3aec7ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1940819447&rft_id=info:pmid/&rfr_iscdi=true