Loading…
Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey
The traveling salesman problem (TSP) belongs to the most basic, most important, and most investigated problems in combinatorial optimization. Although it is an NP-hard problem, many of its special cases can be solved efficiently in polynomial time. We survey these special cases with emphasis on the...
Saved in:
Published in: | SIAM review 1998-09, Vol.40 (3), p.496-546 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-81130e6a2e68f35672fa02d60ffe961432dded0a4f24eb3d6d60f28e56f0911f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-81130e6a2e68f35672fa02d60ffe961432dded0a4f24eb3d6d60f28e56f0911f3 |
container_end_page | 546 |
container_issue | 3 |
container_start_page | 496 |
container_title | SIAM review |
container_volume | 40 |
creator | Burkard, Rainer E. Deῐneko, Vladimir G. van Dal, René Jack A. A. van der Veen Woeginger, Gerhard J. |
description | The traveling salesman problem (TSP) belongs to the most basic, most important, and most investigated problems in combinatorial optimization. Although it is an NP-hard problem, many of its special cases can be solved efficiently in polynomial time. We survey these special cases with emphasis on the results that have been obtained during the decade 1985-1995. This survey complements an earlier survey from 1985 compiled by Gilmore, Lawler, and Shmoys [The Traveling Salesman Problem-A Guided Tour of Combinatorial Optimization, Wiley, Chichester, pp. 87-143]. |
doi_str_mv | 10.1137/S0036144596297514 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194202839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2653230</jstor_id><sourcerecordid>2653230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-81130e6a2e68f35672fa02d60ffe961432dded0a4f24eb3d6d60f28e56f0911f3</originalsourceid><addsrcrecordid>eNplkNFLwzAQxoMoOKd_gOBDEF-rl6RNG9_G0CkICp34WLL2oh1ZM5NusP_elA198Ok4vt99d_cRcsngljGR35UAQrI0zZTkKs9YekRGDFSW5BzgmIwGORn0U3IWwhJiXwg1IrMPtDYpnd3qhUVarrFutaVTHTBQZ2j_hXTu9RZt233SUlsMK93RN-8ivrqnE1pu_BZ35-TEaBvw4lDH5P3xYT59Sl5eZ8_TyUtSCyn6pIjHAkrNURZGZDLnRgNvJBiDKt4veNNgAzo1PMWFaOQg8QIzaUAxZsSYXO991959bzD01dJtfBdXVkylHHj8KkJsD9XeheDRVGvfrrTfVQyqIa7qX1xx5uZgrEOtrfG6q9vwN1gAj2jErvbYMvTO_8pcZoILED_OnHEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194202839</pqid></control><display><type>article</type><title>Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey</title><source>EBSCOhost Business Source Ultimate</source><source>SIAM Journals Archive</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Burkard, Rainer E. ; Deῐneko, Vladimir G. ; van Dal, René ; Jack A. A. van der Veen ; Woeginger, Gerhard J.</creator><creatorcontrib>Burkard, Rainer E. ; Deῐneko, Vladimir G. ; van Dal, René ; Jack A. A. van der Veen ; Woeginger, Gerhard J.</creatorcontrib><description>The traveling salesman problem (TSP) belongs to the most basic, most important, and most investigated problems in combinatorial optimization. Although it is an NP-hard problem, many of its special cases can be solved efficiently in polynomial time. We survey these special cases with emphasis on the results that have been obtained during the decade 1985-1995. This survey complements an earlier survey from 1985 compiled by Gilmore, Lawler, and Shmoys [The Traveling Salesman Problem-A Guided Tour of Combinatorial Optimization, Wiley, Chichester, pp. 87-143].</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/S0036144596297514</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Heuristics ; Itinerant sales ; Mathematical models ; Mathematical programming ; Mathematics ; Matrices ; Operational research and scientific management ; Operational research. Management science ; Polynomials ; Rectangles ; Sciences and techniques of general use ; Theoretical computing ; Traveling salesman problem ; Vanes ; Vertices</subject><ispartof>SIAM review, 1998-09, Vol.40 (3), p.496-546</ispartof><rights>Copyright 1998 Society for Industrial and Applied Mathematics</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics Sep 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-81130e6a2e68f35672fa02d60ffe961432dded0a4f24eb3d6d60f28e56f0911f3</citedby><cites>FETCH-LOGICAL-c363t-81130e6a2e68f35672fa02d60ffe961432dded0a4f24eb3d6d60f28e56f0911f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2653230$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2653230$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,3185,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1802629$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Burkard, Rainer E.</creatorcontrib><creatorcontrib>Deῐneko, Vladimir G.</creatorcontrib><creatorcontrib>van Dal, René</creatorcontrib><creatorcontrib>Jack A. A. van der Veen</creatorcontrib><creatorcontrib>Woeginger, Gerhard J.</creatorcontrib><title>Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey</title><title>SIAM review</title><description>The traveling salesman problem (TSP) belongs to the most basic, most important, and most investigated problems in combinatorial optimization. Although it is an NP-hard problem, many of its special cases can be solved efficiently in polynomial time. We survey these special cases with emphasis on the results that have been obtained during the decade 1985-1995. This survey complements an earlier survey from 1985 compiled by Gilmore, Lawler, and Shmoys [The Traveling Salesman Problem-A Guided Tour of Combinatorial Optimization, Wiley, Chichester, pp. 87-143].</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Heuristics</subject><subject>Itinerant sales</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Polynomials</subject><subject>Rectangles</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><subject>Traveling salesman problem</subject><subject>Vanes</subject><subject>Vertices</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNplkNFLwzAQxoMoOKd_gOBDEF-rl6RNG9_G0CkICp34WLL2oh1ZM5NusP_elA198Ok4vt99d_cRcsngljGR35UAQrI0zZTkKs9YekRGDFSW5BzgmIwGORn0U3IWwhJiXwg1IrMPtDYpnd3qhUVarrFutaVTHTBQZ2j_hXTu9RZt233SUlsMK93RN-8ivrqnE1pu_BZ35-TEaBvw4lDH5P3xYT59Sl5eZ8_TyUtSCyn6pIjHAkrNURZGZDLnRgNvJBiDKt4veNNgAzo1PMWFaOQg8QIzaUAxZsSYXO991959bzD01dJtfBdXVkylHHj8KkJsD9XeheDRVGvfrrTfVQyqIa7qX1xx5uZgrEOtrfG6q9vwN1gAj2jErvbYMvTO_8pcZoILED_OnHEs</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Burkard, Rainer E.</creator><creator>Deῐneko, Vladimir G.</creator><creator>van Dal, René</creator><creator>Jack A. A. van der Veen</creator><creator>Woeginger, Gerhard J.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>U9A</scope></search><sort><creationdate>19980901</creationdate><title>Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey</title><author>Burkard, Rainer E. ; Deῐneko, Vladimir G. ; van Dal, René ; Jack A. A. van der Veen ; Woeginger, Gerhard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-81130e6a2e68f35672fa02d60ffe961432dded0a4f24eb3d6d60f28e56f0911f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Heuristics</topic><topic>Itinerant sales</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Polynomials</topic><topic>Rectangles</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><topic>Traveling salesman problem</topic><topic>Vanes</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkard, Rainer E.</creatorcontrib><creatorcontrib>Deῐneko, Vladimir G.</creatorcontrib><creatorcontrib>van Dal, René</creatorcontrib><creatorcontrib>Jack A. A. van der Veen</creatorcontrib><creatorcontrib>Woeginger, Gerhard J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkard, Rainer E.</au><au>Deῐneko, Vladimir G.</au><au>van Dal, René</au><au>Jack A. A. van der Veen</au><au>Woeginger, Gerhard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey</atitle><jtitle>SIAM review</jtitle><date>1998-09-01</date><risdate>1998</risdate><volume>40</volume><issue>3</issue><spage>496</spage><epage>546</epage><pages>496-546</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>The traveling salesman problem (TSP) belongs to the most basic, most important, and most investigated problems in combinatorial optimization. Although it is an NP-hard problem, many of its special cases can be solved efficiently in polynomial time. We survey these special cases with emphasis on the results that have been obtained during the decade 1985-1995. This survey complements an earlier survey from 1985 compiled by Gilmore, Lawler, and Shmoys [The Traveling Salesman Problem-A Guided Tour of Combinatorial Optimization, Wiley, Chichester, pp. 87-143].</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036144596297514</doi><tpages>51</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1445 |
ispartof | SIAM review, 1998-09, Vol.40 (3), p.496-546 |
issn | 0036-1445 1095-7200 |
language | eng |
recordid | cdi_proquest_journals_194202839 |
source | EBSCOhost Business Source Ultimate; SIAM Journals Archive; JSTOR Archival Journals and Primary Sources Collection |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Combinatorics Combinatorics. Ordered structures Computer science control theory systems Exact sciences and technology Graph theory Heuristics Itinerant sales Mathematical models Mathematical programming Mathematics Matrices Operational research and scientific management Operational research. Management science Polynomials Rectangles Sciences and techniques of general use Theoretical computing Traveling salesman problem Vanes Vertices |
title | Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-Solvable%20Special%20Cases%20of%20the%20Traveling%20Salesman%20Problem:%20A%20Survey&rft.jtitle=SIAM%20review&rft.au=Burkard,%20Rainer%20E.&rft.date=1998-09-01&rft.volume=40&rft.issue=3&rft.spage=496&rft.epage=546&rft.pages=496-546&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/S0036144596297514&rft_dat=%3Cjstor_proqu%3E2653230%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-81130e6a2e68f35672fa02d60ffe961432dded0a4f24eb3d6d60f28e56f0911f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194202839&rft_id=info:pmid/&rft_jstor_id=2653230&rfr_iscdi=true |