Loading…

Lithotripsy: The Treatment of Kidney Stones with Shock Waves

This paper discusses mathematical models for the response of a small air bubble in water to an ultrasound pulse, a context that arises in the modern treatment for kidney stones. The paper reviews Rayleigh's 1917 theory for bubble response, applies asymptotics to describe large-amplitude solutio...

Full description

Saved in:
Bibliographic Details
Published in:SIAM review 1998-06, Vol.40 (2), p.356-371
Main Authors: Howle, Laurens, Schaeffer, David G., Shearer, Michael, Zhong, Pei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c320t-968869ebaf72582804859c0ab1dd6e16659b3ccf3ffc2c179da2851f13c45eb03
cites cdi_FETCH-LOGICAL-c320t-968869ebaf72582804859c0ab1dd6e16659b3ccf3ffc2c179da2851f13c45eb03
container_end_page 371
container_issue 2
container_start_page 356
container_title SIAM review
container_volume 40
creator Howle, Laurens
Schaeffer, David G.
Shearer, Michael
Zhong, Pei
description This paper discusses mathematical models for the response of a small air bubble in water to an ultrasound pulse, a context that arises in the modern treatment for kidney stones. The paper reviews Rayleigh's 1917 theory for bubble response, applies asymptotics to describe large-amplitude solutions of Rayleigh's equations, and briefly discusses effects neglected in the simple model. The style is expository, intended both to introduce this application to mathematicians and to illustrate the use of asymptotic methods to nonmathematicians.
doi_str_mv 10.1137/S0036144597322630
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194203370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2653347</jstor_id><sourcerecordid>2653347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-968869ebaf72582804859c0ab1dd6e16659b3ccf3ffc2c179da2851f13c45eb03</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMoWKsfQPAQxOtqkrdJNuJFiv-w4KEVj0s2m9Ct7aYmqaXf3l1a9ODpMcxv5sEgdE7JNaUgbyaEgKB5zpUExgSQAzSgRPFMMkIO0aC3s94_RicxzkmnC1ADdDdu0syn0Kzi9hZPZxZPg9VpaduEvcOvTd3aLZ4k39qINx2LJzNvPvGH_rbxFB05vYj2bH-H6P3xYTp6zsZvTy-j-3FmgJGUKVEUQtlKO8l4wQqSF1wZoita18JSIbiqwBgHzhlmqFS1ZgWnjoLJua0IDNHlrncV_NfaxlTO_Tq03cuSqpwRANlDdAeZ4GMM1pWr0Cx12JaUlP1G5b-NuszVvlhHoxcu6NY08TfIQHa06LCLHTaPyYc_W3CAXMIPtZVtrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194203370</pqid></control><display><type>article</type><title>Lithotripsy: The Treatment of Kidney Stones with Shock Waves</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>SIAM美国工业和应用数学学会电子期刊 - Locus过刊全文数据库</source><creator>Howle, Laurens ; Schaeffer, David G. ; Shearer, Michael ; Zhong, Pei</creator><creatorcontrib>Howle, Laurens ; Schaeffer, David G. ; Shearer, Michael ; Zhong, Pei</creatorcontrib><description>This paper discusses mathematical models for the response of a small air bubble in water to an ultrasound pulse, a context that arises in the modern treatment for kidney stones. The paper reviews Rayleigh's 1917 theory for bubble response, applies asymptotics to describe large-amplitude solutions of Rayleigh's equations, and briefly discusses effects neglected in the simple model. The style is expository, intended both to introduce this application to mathematicians and to illustrate the use of asymptotic methods to nonmathematicians.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/S0036144597322630</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Bubbles ; Cavitation flow ; Classical and quantum physics: mechanics and fields ; Classical mechanics of continuous media: general mathematical aspects ; Classroom Notes ; Compressibility ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid mechanics: general mathematical aspects ; Function theory, analysis ; Kidney stones ; Kidneys ; Liquids ; Lithotripsy ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Mathematical problems ; Mathematics ; Mathematics education ; Medical procedures ; Partial differential equations ; Physics ; Pressure pulses ; Sciences and techniques of general use ; Shock waves</subject><ispartof>SIAM review, 1998-06, Vol.40 (2), p.356-371</ispartof><rights>Copyright 1998 Society for Industrial and Applied Mathematics</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics Jun 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-968869ebaf72582804859c0ab1dd6e16659b3ccf3ffc2c179da2851f13c45eb03</citedby><cites>FETCH-LOGICAL-c320t-968869ebaf72582804859c0ab1dd6e16659b3ccf3ffc2c179da2851f13c45eb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2653347$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2653347$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,3184,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2374456$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Howle, Laurens</creatorcontrib><creatorcontrib>Schaeffer, David G.</creatorcontrib><creatorcontrib>Shearer, Michael</creatorcontrib><creatorcontrib>Zhong, Pei</creatorcontrib><title>Lithotripsy: The Treatment of Kidney Stones with Shock Waves</title><title>SIAM review</title><description>This paper discusses mathematical models for the response of a small air bubble in water to an ultrasound pulse, a context that arises in the modern treatment for kidney stones. The paper reviews Rayleigh's 1917 theory for bubble response, applies asymptotics to describe large-amplitude solutions of Rayleigh's equations, and briefly discusses effects neglected in the simple model. The style is expository, intended both to introduce this application to mathematicians and to illustrate the use of asymptotic methods to nonmathematicians.</description><subject>Bubbles</subject><subject>Cavitation flow</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of continuous media: general mathematical aspects</subject><subject>Classroom Notes</subject><subject>Compressibility</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics: general mathematical aspects</subject><subject>Function theory, analysis</subject><subject>Kidney stones</subject><subject>Kidneys</subject><subject>Liquids</subject><subject>Lithotripsy</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Mathematics education</subject><subject>Medical procedures</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Pressure pulses</subject><subject>Sciences and techniques of general use</subject><subject>Shock waves</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEUxIMoWKsfQPAQxOtqkrdJNuJFiv-w4KEVj0s2m9Ct7aYmqaXf3l1a9ODpMcxv5sEgdE7JNaUgbyaEgKB5zpUExgSQAzSgRPFMMkIO0aC3s94_RicxzkmnC1ADdDdu0syn0Kzi9hZPZxZPg9VpaduEvcOvTd3aLZ4k39qINx2LJzNvPvGH_rbxFB05vYj2bH-H6P3xYTp6zsZvTy-j-3FmgJGUKVEUQtlKO8l4wQqSF1wZoita18JSIbiqwBgHzhlmqFS1ZgWnjoLJua0IDNHlrncV_NfaxlTO_Tq03cuSqpwRANlDdAeZ4GMM1pWr0Cx12JaUlP1G5b-NuszVvlhHoxcu6NY08TfIQHa06LCLHTaPyYc_W3CAXMIPtZVtrg</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Howle, Laurens</creator><creator>Schaeffer, David G.</creator><creator>Shearer, Michael</creator><creator>Zhong, Pei</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>U9A</scope></search><sort><creationdate>19980601</creationdate><title>Lithotripsy: The Treatment of Kidney Stones with Shock Waves</title><author>Howle, Laurens ; Schaeffer, David G. ; Shearer, Michael ; Zhong, Pei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-968869ebaf72582804859c0ab1dd6e16659b3ccf3ffc2c179da2851f13c45eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bubbles</topic><topic>Cavitation flow</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of continuous media: general mathematical aspects</topic><topic>Classroom Notes</topic><topic>Compressibility</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics: general mathematical aspects</topic><topic>Function theory, analysis</topic><topic>Kidney stones</topic><topic>Kidneys</topic><topic>Liquids</topic><topic>Lithotripsy</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Mathematics education</topic><topic>Medical procedures</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Pressure pulses</topic><topic>Sciences and techniques of general use</topic><topic>Shock waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howle, Laurens</creatorcontrib><creatorcontrib>Schaeffer, David G.</creatorcontrib><creatorcontrib>Shearer, Michael</creatorcontrib><creatorcontrib>Zhong, Pei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howle, Laurens</au><au>Schaeffer, David G.</au><au>Shearer, Michael</au><au>Zhong, Pei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithotripsy: The Treatment of Kidney Stones with Shock Waves</atitle><jtitle>SIAM review</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>40</volume><issue>2</issue><spage>356</spage><epage>371</epage><pages>356-371</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>This paper discusses mathematical models for the response of a small air bubble in water to an ultrasound pulse, a context that arises in the modern treatment for kidney stones. The paper reviews Rayleigh's 1917 theory for bubble response, applies asymptotics to describe large-amplitude solutions of Rayleigh's equations, and briefly discusses effects neglected in the simple model. The style is expository, intended both to introduce this application to mathematicians and to illustrate the use of asymptotic methods to nonmathematicians.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036144597322630</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1445
ispartof SIAM review, 1998-06, Vol.40 (2), p.356-371
issn 0036-1445
1095-7200
language eng
recordid cdi_proquest_journals_194203370
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; JSTOR Archival Journals and Primary Sources Collection; SIAM美国工业和应用数学学会电子期刊 - Locus过刊全文数据库
subjects Bubbles
Cavitation flow
Classical and quantum physics: mechanics and fields
Classical mechanics of continuous media: general mathematical aspects
Classroom Notes
Compressibility
Computational methods in fluid dynamics
Exact sciences and technology
Fluid mechanics: general mathematical aspects
Function theory, analysis
Kidney stones
Kidneys
Liquids
Lithotripsy
Mathematical analysis
Mathematical methods in physics
Mathematical models
Mathematical problems
Mathematics
Mathematics education
Medical procedures
Partial differential equations
Physics
Pressure pulses
Sciences and techniques of general use
Shock waves
title Lithotripsy: The Treatment of Kidney Stones with Shock Waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithotripsy:%20The%20Treatment%20of%20Kidney%20Stones%20with%20Shock%20Waves&rft.jtitle=SIAM%20review&rft.au=Howle,%20Laurens&rft.date=1998-06-01&rft.volume=40&rft.issue=2&rft.spage=356&rft.epage=371&rft.pages=356-371&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/S0036144597322630&rft_dat=%3Cjstor_proqu%3E2653347%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-968869ebaf72582804859c0ab1dd6e16659b3ccf3ffc2c179da2851f13c45eb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194203370&rft_id=info:pmid/&rft_jstor_id=2653347&rfr_iscdi=true