Loading…

Partitioning of nanoparticle‐originated dissolved silver in natural and artificial sediments

Sediments are believed to be a major sink for silver nanoparticles (AgNPs) in the aquatic environment, but there is a lack of knowledge about the environmental effects and behavior of AgNPs in sediments. The release of highly toxic Ag+ through dissolution of AgNPs is one mechanism leading to toxic e...

Full description

Saved in:
Bibliographic Details
Published in:Environmental toxicology and chemistry 2017-10, Vol.36 (10), p.2593-2601
Main Authors: Rajala, Juho E., Vehniäinen, Eeva‐Riikka, Väisänen, Ari, Kukkonen, Jussi V.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sediments are believed to be a major sink for silver nanoparticles (AgNPs) in the aquatic environment, but there is a lack of knowledge about the environmental effects and behavior of AgNPs in sediments. The release of highly toxic Ag+ through dissolution of AgNPs is one mechanism leading to toxic effects in sediments. We applied an ultrasound‐assisted sequential extraction method to evaluate the dissolution of AgNPs and to study the partitioning of dissolved Ag in sediments. Silver was spiked into artificial and 2 natural sediments (Lake Höytiäinen sediment and Lake Kuorinka sediment) as silver nitrate (AgNO3), uncoated AgNPs, or polyvinylpyrrolidone‐coated AgNPs (PVP‐AgNPs). In addition, the total body burdens of Ag in the sediment‐dwelling oligochaete Lumbriculus variegatus were assessed over a 28‐d exposure period. The dissolution rate was found to be similar between the uncoated AgNP and PVP‐AgNP groups. In all sediments, dissolved Ag was mainly bound to the residual fraction of the sediment, followed by iron and manganese oxides or natural organic matter. In Lake Kuorinka sediment, dissolved Ag that originated from PVP‐AgNPs was relatively more bioaccessible, also resulting in higher total body burden in L. variegatus than that from uncoated AgNPs or AgNO3. In artificial sediment and Lake Höytiäinen sediment, AgNO3 was significantly more bioaccessible than AgNPs. Our results highlight the importance of sediment properties and AgNP surface chemistry when evaluating the environmental exposure of AgNPs. Environ Toxicol Chem 2017;36:2593–2601. © 2017 SETAC
ISSN:0730-7268
1552-8618
DOI:10.1002/etc.3798