Loading…
General-to-Specific Model Selection Procedures for Structural Vector Autoregressions
Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper, we propose general‐to‐spec...
Saved in:
Published in: | Oxford bulletin of economics and statistics 2003-01, Vol.65 (s1), p.769-801 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3 |
container_end_page | 801 |
container_issue | s1 |
container_start_page | 769 |
container_title | Oxford bulletin of economics and statistics |
container_volume | 65 |
creator | Krolzig, Hans-Martin |
description | Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper, we propose general‐to‐specific (Gets) model selection procedures to overcome these limitations. It is shown that single‐equation procedures are generally efficient for the reduction of recursive SVAR models. The small‐sample properties of the proposed reduction procedure (as implemented using PcGets) are evaluated in a realistic Monte Carlo experiment. The impulse responses generated by the selected SVAR are found to be more precise and accurate than those of the unrestricted VAR. The proposed reduction strategy is then applied to the US monetary system considered by Christiano, Eichenbaum and Evans (Review of Economics and Statistics, Vol. 78, pp. 16–34, 1996). The results are consistent with the Monte Carlo and question the validity of the impulse responses generated by the full system. |
doi_str_mv | 10.1046/j.0305-9049.2003.00088.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194234401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>548921051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3</originalsourceid><addsrcrecordid>eNqNkE1v00AQhi0EEqHtf7C42-y3vQcOJSopaqCtUj5uo_V6DA5uHHZtSP59J3GVM4eZ_dDzzK7eJEk5yzlT5t06Z5LpzDJlc8GYzBljZZnvXiQzrkyZ0Um9TGYn6HXyJsY1QVxoO0seFrjB4Lps6LPVFn3btD793NfYpSvs0A9tv0nvQu-xHgPGtOlDuhrC6IeRrPQbEXRzOVLHnwRE4uN58qpxXcSL5_Us-frx6mF-nS1vF5_ml8vMa6HLTGBdVYKpwskatS8NYqkLVNYYp4wQrnBaciW8sJUyjXHaass1Z6xuygK9PEveTnO3of8zYhxg3Y9hQ08Ct0pIpRgnqJwgH_oYAzawDe2jC3vgDA4RwhoO6cAhHThECMcIYUfqzaQGpGhOXtW5vjo-9xekM5ranuqoStdSRU5tS1UYCyXj8Gt4pGnvp2n_2g73__0LuP1wtaId-dnkt3HA3cl34TeYQhYavn9ZwPy64PfLH_ewkE9QoaBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194234401</pqid></control><display><type>article</type><title>General-to-Specific Model Selection Procedures for Structural Vector Autoregressions</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley</source><source>EBSCOhost Econlit with Full Text</source><creator>Krolzig, Hans-Martin</creator><creatorcontrib>Krolzig, Hans-Martin</creatorcontrib><description>Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper, we propose general‐to‐specific (Gets) model selection procedures to overcome these limitations. It is shown that single‐equation procedures are generally efficient for the reduction of recursive SVAR models. The small‐sample properties of the proposed reduction procedure (as implemented using PcGets) are evaluated in a realistic Monte Carlo experiment. The impulse responses generated by the selected SVAR are found to be more precise and accurate than those of the unrestricted VAR. The proposed reduction strategy is then applied to the US monetary system considered by Christiano, Eichenbaum and Evans (Review of Economics and Statistics, Vol. 78, pp. 16–34, 1996). The results are consistent with the Monte Carlo and question the validity of the impulse responses generated by the full system.</description><identifier>ISSN: 0305-9049</identifier><identifier>EISSN: 1468-0084</identifier><identifier>DOI: 10.1046/j.0305-9049.2003.00088.x</identifier><language>eng</language><publisher>Oxford, UK and Malden, USA: Blackwell Publishing Ltd</publisher><subject>C32 ; C51 ; E52 ; Economic models ; Monte Carlo simulation ; Regression analysis ; Studies</subject><ispartof>Oxford bulletin of economics and statistics, 2003-01, Vol.65 (s1), p.769-801</ispartof><rights>Copyright Blackwell Publishers 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3</citedby><cites>FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912,33210</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blaobuest/v_3a65_3ay_3a2003_3ai_3as1_3ap_3a769-801.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Krolzig, Hans-Martin</creatorcontrib><title>General-to-Specific Model Selection Procedures for Structural Vector Autoregressions</title><title>Oxford bulletin of economics and statistics</title><description>Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper, we propose general‐to‐specific (Gets) model selection procedures to overcome these limitations. It is shown that single‐equation procedures are generally efficient for the reduction of recursive SVAR models. The small‐sample properties of the proposed reduction procedure (as implemented using PcGets) are evaluated in a realistic Monte Carlo experiment. The impulse responses generated by the selected SVAR are found to be more precise and accurate than those of the unrestricted VAR. The proposed reduction strategy is then applied to the US monetary system considered by Christiano, Eichenbaum and Evans (Review of Economics and Statistics, Vol. 78, pp. 16–34, 1996). The results are consistent with the Monte Carlo and question the validity of the impulse responses generated by the full system.</description><subject>C32</subject><subject>C51</subject><subject>E52</subject><subject>Economic models</subject><subject>Monte Carlo simulation</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0305-9049</issn><issn>1468-0084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkE1v00AQhi0EEqHtf7C42-y3vQcOJSopaqCtUj5uo_V6DA5uHHZtSP59J3GVM4eZ_dDzzK7eJEk5yzlT5t06Z5LpzDJlc8GYzBljZZnvXiQzrkyZ0Um9TGYn6HXyJsY1QVxoO0seFrjB4Lps6LPVFn3btD793NfYpSvs0A9tv0nvQu-xHgPGtOlDuhrC6IeRrPQbEXRzOVLHnwRE4uN58qpxXcSL5_Us-frx6mF-nS1vF5_ml8vMa6HLTGBdVYKpwskatS8NYqkLVNYYp4wQrnBaciW8sJUyjXHaass1Z6xuygK9PEveTnO3of8zYhxg3Y9hQ08Ct0pIpRgnqJwgH_oYAzawDe2jC3vgDA4RwhoO6cAhHThECMcIYUfqzaQGpGhOXtW5vjo-9xekM5ranuqoStdSRU5tS1UYCyXj8Gt4pGnvp2n_2g73__0LuP1wtaId-dnkt3HA3cl34TeYQhYavn9ZwPy64PfLH_ewkE9QoaBQ</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Krolzig, Hans-Martin</creator><general>Blackwell Publishing Ltd</general><general>Department of Economics, University of Oxford</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20030101</creationdate><title>General-to-Specific Model Selection Procedures for Structural Vector Autoregressions</title><author>Krolzig, Hans-Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>C32</topic><topic>C51</topic><topic>E52</topic><topic>Economic models</topic><topic>Monte Carlo simulation</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krolzig, Hans-Martin</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Oxford bulletin of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krolzig, Hans-Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General-to-Specific Model Selection Procedures for Structural Vector Autoregressions</atitle><jtitle>Oxford bulletin of economics and statistics</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>65</volume><issue>s1</issue><spage>769</spage><epage>801</epage><pages>769-801</pages><issn>0305-9049</issn><eissn>1468-0084</eissn><abstract>Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper, we propose general‐to‐specific (Gets) model selection procedures to overcome these limitations. It is shown that single‐equation procedures are generally efficient for the reduction of recursive SVAR models. The small‐sample properties of the proposed reduction procedure (as implemented using PcGets) are evaluated in a realistic Monte Carlo experiment. The impulse responses generated by the selected SVAR are found to be more precise and accurate than those of the unrestricted VAR. The proposed reduction strategy is then applied to the US monetary system considered by Christiano, Eichenbaum and Evans (Review of Economics and Statistics, Vol. 78, pp. 16–34, 1996). The results are consistent with the Monte Carlo and question the validity of the impulse responses generated by the full system.</abstract><cop>Oxford, UK and Malden, USA</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1046/j.0305-9049.2003.00088.x</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-9049 |
ispartof | Oxford bulletin of economics and statistics, 2003-01, Vol.65 (s1), p.769-801 |
issn | 0305-9049 1468-0084 |
language | eng |
recordid | cdi_proquest_journals_194234401 |
source | EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); Wiley; EBSCOhost Econlit with Full Text |
subjects | C32 C51 E52 Economic models Monte Carlo simulation Regression analysis Studies |
title | General-to-Specific Model Selection Procedures for Structural Vector Autoregressions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General-to-Specific%20Model%20Selection%20Procedures%20for%20Structural%20Vector%20Autoregressions&rft.jtitle=Oxford%20bulletin%20of%20economics%20and%20statistics&rft.au=Krolzig,%20Hans-Martin&rft.date=2003-01-01&rft.volume=65&rft.issue=s1&rft.spage=769&rft.epage=801&rft.pages=769-801&rft.issn=0305-9049&rft.eissn=1468-0084&rft_id=info:doi/10.1046/j.0305-9049.2003.00088.x&rft_dat=%3Cproquest_cross%3E548921051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194234401&rft_id=info:pmid/&rfr_iscdi=true |