Loading…

General-to-Specific Model Selection Procedures for Structural Vector Autoregressions

Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper, we propose general‐to‐spec...

Full description

Saved in:
Bibliographic Details
Published in:Oxford bulletin of economics and statistics 2003-01, Vol.65 (s1), p.769-801
Main Author: Krolzig, Hans-Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3
cites cdi_FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3
container_end_page 801
container_issue s1
container_start_page 769
container_title Oxford bulletin of economics and statistics
container_volume 65
creator Krolzig, Hans-Martin
description Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper, we propose general‐to‐specific (Gets) model selection procedures to overcome these limitations. It is shown that single‐equation procedures are generally efficient for the reduction of recursive SVAR models. The small‐sample properties of the proposed reduction procedure (as implemented using PcGets) are evaluated in a realistic Monte Carlo experiment. The impulse responses generated by the selected SVAR are found to be more precise and accurate than those of the unrestricted VAR. The proposed reduction strategy is then applied to the US monetary system considered by Christiano, Eichenbaum and Evans (Review of Economics and Statistics, Vol. 78, pp. 16–34, 1996). The results are consistent with the Monte Carlo and question the validity of the impulse responses generated by the full system.
doi_str_mv 10.1046/j.0305-9049.2003.00088.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194234401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>548921051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3</originalsourceid><addsrcrecordid>eNqNkE1v00AQhi0EEqHtf7C42-y3vQcOJSopaqCtUj5uo_V6DA5uHHZtSP59J3GVM4eZ_dDzzK7eJEk5yzlT5t06Z5LpzDJlc8GYzBljZZnvXiQzrkyZ0Um9TGYn6HXyJsY1QVxoO0seFrjB4Lps6LPVFn3btD793NfYpSvs0A9tv0nvQu-xHgPGtOlDuhrC6IeRrPQbEXRzOVLHnwRE4uN58qpxXcSL5_Us-frx6mF-nS1vF5_ml8vMa6HLTGBdVYKpwskatS8NYqkLVNYYp4wQrnBaciW8sJUyjXHaass1Z6xuygK9PEveTnO3of8zYhxg3Y9hQ08Ct0pIpRgnqJwgH_oYAzawDe2jC3vgDA4RwhoO6cAhHThECMcIYUfqzaQGpGhOXtW5vjo-9xekM5ranuqoStdSRU5tS1UYCyXj8Gt4pGnvp2n_2g73__0LuP1wtaId-dnkt3HA3cl34TeYQhYavn9ZwPy64PfLH_ewkE9QoaBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194234401</pqid></control><display><type>article</type><title>General-to-Specific Model Selection Procedures for Structural Vector Autoregressions</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley</source><source>EBSCOhost Econlit with Full Text</source><creator>Krolzig, Hans-Martin</creator><creatorcontrib>Krolzig, Hans-Martin</creatorcontrib><description>Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper, we propose general‐to‐specific (Gets) model selection procedures to overcome these limitations. It is shown that single‐equation procedures are generally efficient for the reduction of recursive SVAR models. The small‐sample properties of the proposed reduction procedure (as implemented using PcGets) are evaluated in a realistic Monte Carlo experiment. The impulse responses generated by the selected SVAR are found to be more precise and accurate than those of the unrestricted VAR. The proposed reduction strategy is then applied to the US monetary system considered by Christiano, Eichenbaum and Evans (Review of Economics and Statistics, Vol. 78, pp. 16–34, 1996). The results are consistent with the Monte Carlo and question the validity of the impulse responses generated by the full system.</description><identifier>ISSN: 0305-9049</identifier><identifier>EISSN: 1468-0084</identifier><identifier>DOI: 10.1046/j.0305-9049.2003.00088.x</identifier><language>eng</language><publisher>Oxford, UK and Malden, USA: Blackwell Publishing Ltd</publisher><subject>C32 ; C51 ; E52 ; Economic models ; Monte Carlo simulation ; Regression analysis ; Studies</subject><ispartof>Oxford bulletin of economics and statistics, 2003-01, Vol.65 (s1), p.769-801</ispartof><rights>Copyright Blackwell Publishers 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3</citedby><cites>FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912,33210</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blaobuest/v_3a65_3ay_3a2003_3ai_3as1_3ap_3a769-801.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Krolzig, Hans-Martin</creatorcontrib><title>General-to-Specific Model Selection Procedures for Structural Vector Autoregressions</title><title>Oxford bulletin of economics and statistics</title><description>Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper, we propose general‐to‐specific (Gets) model selection procedures to overcome these limitations. It is shown that single‐equation procedures are generally efficient for the reduction of recursive SVAR models. The small‐sample properties of the proposed reduction procedure (as implemented using PcGets) are evaluated in a realistic Monte Carlo experiment. The impulse responses generated by the selected SVAR are found to be more precise and accurate than those of the unrestricted VAR. The proposed reduction strategy is then applied to the US monetary system considered by Christiano, Eichenbaum and Evans (Review of Economics and Statistics, Vol. 78, pp. 16–34, 1996). The results are consistent with the Monte Carlo and question the validity of the impulse responses generated by the full system.</description><subject>C32</subject><subject>C51</subject><subject>E52</subject><subject>Economic models</subject><subject>Monte Carlo simulation</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0305-9049</issn><issn>1468-0084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkE1v00AQhi0EEqHtf7C42-y3vQcOJSopaqCtUj5uo_V6DA5uHHZtSP59J3GVM4eZ_dDzzK7eJEk5yzlT5t06Z5LpzDJlc8GYzBljZZnvXiQzrkyZ0Um9TGYn6HXyJsY1QVxoO0seFrjB4Lps6LPVFn3btD793NfYpSvs0A9tv0nvQu-xHgPGtOlDuhrC6IeRrPQbEXRzOVLHnwRE4uN58qpxXcSL5_Us-frx6mF-nS1vF5_ml8vMa6HLTGBdVYKpwskatS8NYqkLVNYYp4wQrnBaciW8sJUyjXHaass1Z6xuygK9PEveTnO3of8zYhxg3Y9hQ08Ct0pIpRgnqJwgH_oYAzawDe2jC3vgDA4RwhoO6cAhHThECMcIYUfqzaQGpGhOXtW5vjo-9xekM5ranuqoStdSRU5tS1UYCyXj8Gt4pGnvp2n_2g73__0LuP1wtaId-dnkt3HA3cl34TeYQhYavn9ZwPy64PfLH_ewkE9QoaBQ</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Krolzig, Hans-Martin</creator><general>Blackwell Publishing Ltd</general><general>Department of Economics, University of Oxford</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20030101</creationdate><title>General-to-Specific Model Selection Procedures for Structural Vector Autoregressions</title><author>Krolzig, Hans-Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>C32</topic><topic>C51</topic><topic>E52</topic><topic>Economic models</topic><topic>Monte Carlo simulation</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krolzig, Hans-Martin</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Oxford bulletin of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krolzig, Hans-Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General-to-Specific Model Selection Procedures for Structural Vector Autoregressions</atitle><jtitle>Oxford bulletin of economics and statistics</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>65</volume><issue>s1</issue><spage>769</spage><epage>801</epage><pages>769-801</pages><issn>0305-9049</issn><eissn>1468-0084</eissn><abstract>Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper, we propose general‐to‐specific (Gets) model selection procedures to overcome these limitations. It is shown that single‐equation procedures are generally efficient for the reduction of recursive SVAR models. The small‐sample properties of the proposed reduction procedure (as implemented using PcGets) are evaluated in a realistic Monte Carlo experiment. The impulse responses generated by the selected SVAR are found to be more precise and accurate than those of the unrestricted VAR. The proposed reduction strategy is then applied to the US monetary system considered by Christiano, Eichenbaum and Evans (Review of Economics and Statistics, Vol. 78, pp. 16–34, 1996). The results are consistent with the Monte Carlo and question the validity of the impulse responses generated by the full system.</abstract><cop>Oxford, UK and Malden, USA</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1046/j.0305-9049.2003.00088.x</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-9049
ispartof Oxford bulletin of economics and statistics, 2003-01, Vol.65 (s1), p.769-801
issn 0305-9049
1468-0084
language eng
recordid cdi_proquest_journals_194234401
source EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); Wiley; EBSCOhost Econlit with Full Text
subjects C32
C51
E52
Economic models
Monte Carlo simulation
Regression analysis
Studies
title General-to-Specific Model Selection Procedures for Structural Vector Autoregressions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General-to-Specific%20Model%20Selection%20Procedures%20for%20Structural%20Vector%20Autoregressions&rft.jtitle=Oxford%20bulletin%20of%20economics%20and%20statistics&rft.au=Krolzig,%20Hans-Martin&rft.date=2003-01-01&rft.volume=65&rft.issue=s1&rft.spage=769&rft.epage=801&rft.pages=769-801&rft.issn=0305-9049&rft.eissn=1468-0084&rft_id=info:doi/10.1046/j.0305-9049.2003.00088.x&rft_dat=%3Cproquest_cross%3E548921051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5258-2edbb2047a3de5c86ee857e4966a4622a7a53142c29b46f6a595915100df87ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194234401&rft_id=info:pmid/&rfr_iscdi=true