Loading…

Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach

The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled by a continu...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-04, Vol.691, p.155-161
Main Authors: Esposito, L., Boccaccini, D.N., Pucillo, G.P., Frandsen, H.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c284t-ad111846dc340db7a918fc4fb8b2821c910815a94978d1cd6b17dbac8c8a336a3
cites cdi_FETCH-LOGICAL-c284t-ad111846dc340db7a918fc4fb8b2821c910815a94978d1cd6b17dbac8c8a336a3
container_end_page 161
container_issue
container_start_page 155
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 691
creator Esposito, L.
Boccaccini, D.N.
Pucillo, G.P.
Frandsen, H.L.
description The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled by a continuum damage mechanics (CDM) approach. The behaviour of the porous metal support, in the range from 1 to 17MPa and temperatures between 650 and 700°C, was combined and compared with data from literature of Crofer® 22 APU, taken as zero porosity reference material. The variation of the elastic modulus as function of temperature, determined by the high temperature impulse excitation technique, was directly used to account for the porosity and the related effective stress acting during the creep tests. The proposed creep rate formulation was used to extend the Crofer® 22 APU Monkman-Grant diagram in the viscous creep regime. The influence of oxide scale formation on creep behaviour of the porous MS was assessed by comparing the creep data of pre-oxidised samples tested in reducing atmosphere.
doi_str_mv 10.1016/j.msea.2017.03.050
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1943248539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509317303465</els_id><sourcerecordid>1943248539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-ad111846dc340db7a918fc4fb8b2821c910815a94978d1cd6b17dbac8c8a336a3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz60zTdom4EXWv7DiQfcc0iTFlu6mJq3otzfLevY0DLw3b96PkEuEHAGr6z7fRqfzArDOgeVQwhFZoKhZxiWrjskCZIFZCZKdkrMYewBADuWCbN6c8Turww81wbmR-paOPvg50q2b9EDjPKZ9irT1gUY_dJb678462s5uoMYNQ6TND9V0dfdC9TgGr83HOTlp9RDdxd9cks3D_fvqKVu_Pj6vbteZKQSfMm0RUfDKGsbBNrWWKFrD20Y0hSjQSASBpZZc1sKisVWDtW20EUZoxirNluTqcDfFfs4uTqr3c9ilSIWSs4KLksmkKg4qE3yMwbVqDN02VVYIao9P9WqPT-3xKWAq4Uumm4PJpf-_OhdUNJ3bGWe74MykrO_-s_8C8nt4dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943248539</pqid></control><display><type>article</type><title>Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Esposito, L. ; Boccaccini, D.N. ; Pucillo, G.P. ; Frandsen, H.L.</creator><creatorcontrib>Esposito, L. ; Boccaccini, D.N. ; Pucillo, G.P. ; Frandsen, H.L.</creatorcontrib><description>The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled by a continuum damage mechanics (CDM) approach. The behaviour of the porous metal support, in the range from 1 to 17MPa and temperatures between 650 and 700°C, was combined and compared with data from literature of Crofer® 22 APU, taken as zero porosity reference material. The variation of the elastic modulus as function of temperature, determined by the high temperature impulse excitation technique, was directly used to account for the porosity and the related effective stress acting during the creep tests. The proposed creep rate formulation was used to extend the Crofer® 22 APU Monkman-Grant diagram in the viscous creep regime. The influence of oxide scale formation on creep behaviour of the porous MS was assessed by comparing the creep data of pre-oxidised samples tested in reducing atmosphere.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2017.03.050</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Chromium base alloys ; Continuum damage mechanics ; Creep ; Creep rate ; Creep tests ; Ferrous alloys ; High-temperature ferritic stainless steel ; Iron chromium alloys ; Metal supports ; Modulus of elasticity ; Porosity ; Scale (corrosion) ; Scale formation ; Solid oxide fuel cells</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2017-04, Vol.691, p.155-161</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 13, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-ad111846dc340db7a918fc4fb8b2821c910815a94978d1cd6b17dbac8c8a336a3</citedby><cites>FETCH-LOGICAL-c284t-ad111846dc340db7a918fc4fb8b2821c910815a94978d1cd6b17dbac8c8a336a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Esposito, L.</creatorcontrib><creatorcontrib>Boccaccini, D.N.</creatorcontrib><creatorcontrib>Pucillo, G.P.</creatorcontrib><creatorcontrib>Frandsen, H.L.</creatorcontrib><title>Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled by a continuum damage mechanics (CDM) approach. The behaviour of the porous metal support, in the range from 1 to 17MPa and temperatures between 650 and 700°C, was combined and compared with data from literature of Crofer® 22 APU, taken as zero porosity reference material. The variation of the elastic modulus as function of temperature, determined by the high temperature impulse excitation technique, was directly used to account for the porosity and the related effective stress acting during the creep tests. The proposed creep rate formulation was used to extend the Crofer® 22 APU Monkman-Grant diagram in the viscous creep regime. The influence of oxide scale formation on creep behaviour of the porous MS was assessed by comparing the creep data of pre-oxidised samples tested in reducing atmosphere.</description><subject>Chromium base alloys</subject><subject>Continuum damage mechanics</subject><subject>Creep</subject><subject>Creep rate</subject><subject>Creep tests</subject><subject>Ferrous alloys</subject><subject>High-temperature ferritic stainless steel</subject><subject>Iron chromium alloys</subject><subject>Metal supports</subject><subject>Modulus of elasticity</subject><subject>Porosity</subject><subject>Scale (corrosion)</subject><subject>Scale formation</subject><subject>Solid oxide fuel cells</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz60zTdom4EXWv7DiQfcc0iTFlu6mJq3otzfLevY0DLw3b96PkEuEHAGr6z7fRqfzArDOgeVQwhFZoKhZxiWrjskCZIFZCZKdkrMYewBADuWCbN6c8Turww81wbmR-paOPvg50q2b9EDjPKZ9irT1gUY_dJb678462s5uoMYNQ6TND9V0dfdC9TgGr83HOTlp9RDdxd9cks3D_fvqKVu_Pj6vbteZKQSfMm0RUfDKGsbBNrWWKFrD20Y0hSjQSASBpZZc1sKisVWDtW20EUZoxirNluTqcDfFfs4uTqr3c9ilSIWSs4KLksmkKg4qE3yMwbVqDN02VVYIao9P9WqPT-3xKWAq4Uumm4PJpf-_OhdUNJ3bGWe74MykrO_-s_8C8nt4dA</recordid><startdate>20170413</startdate><enddate>20170413</enddate><creator>Esposito, L.</creator><creator>Boccaccini, D.N.</creator><creator>Pucillo, G.P.</creator><creator>Frandsen, H.L.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170413</creationdate><title>Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach</title><author>Esposito, L. ; Boccaccini, D.N. ; Pucillo, G.P. ; Frandsen, H.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-ad111846dc340db7a918fc4fb8b2821c910815a94978d1cd6b17dbac8c8a336a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chromium base alloys</topic><topic>Continuum damage mechanics</topic><topic>Creep</topic><topic>Creep rate</topic><topic>Creep tests</topic><topic>Ferrous alloys</topic><topic>High-temperature ferritic stainless steel</topic><topic>Iron chromium alloys</topic><topic>Metal supports</topic><topic>Modulus of elasticity</topic><topic>Porosity</topic><topic>Scale (corrosion)</topic><topic>Scale formation</topic><topic>Solid oxide fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esposito, L.</creatorcontrib><creatorcontrib>Boccaccini, D.N.</creatorcontrib><creatorcontrib>Pucillo, G.P.</creatorcontrib><creatorcontrib>Frandsen, H.L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esposito, L.</au><au>Boccaccini, D.N.</au><au>Pucillo, G.P.</au><au>Frandsen, H.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2017-04-13</date><risdate>2017</risdate><volume>691</volume><spage>155</spage><epage>161</epage><pages>155-161</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled by a continuum damage mechanics (CDM) approach. The behaviour of the porous metal support, in the range from 1 to 17MPa and temperatures between 650 and 700°C, was combined and compared with data from literature of Crofer® 22 APU, taken as zero porosity reference material. The variation of the elastic modulus as function of temperature, determined by the high temperature impulse excitation technique, was directly used to account for the porosity and the related effective stress acting during the creep tests. The proposed creep rate formulation was used to extend the Crofer® 22 APU Monkman-Grant diagram in the viscous creep regime. The influence of oxide scale formation on creep behaviour of the porous MS was assessed by comparing the creep data of pre-oxidised samples tested in reducing atmosphere.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2017.03.050</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-04, Vol.691, p.155-161
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_1943248539
source ScienceDirect Freedom Collection 2022-2024
subjects Chromium base alloys
Continuum damage mechanics
Creep
Creep rate
Creep tests
Ferrous alloys
High-temperature ferritic stainless steel
Iron chromium alloys
Metal supports
Modulus of elasticity
Porosity
Scale (corrosion)
Scale formation
Solid oxide fuel cells
title Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20creep%20of%20porous%20metal%20supports%20for%20solid%20oxide%20fuel%20cells%20by%20a%20CDM%20approach&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Esposito,%20L.&rft.date=2017-04-13&rft.volume=691&rft.spage=155&rft.epage=161&rft.pages=155-161&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2017.03.050&rft_dat=%3Cproquest_cross%3E1943248539%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-ad111846dc340db7a918fc4fb8b2821c910815a94978d1cd6b17dbac8c8a336a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1943248539&rft_id=info:pmid/&rfr_iscdi=true