Loading…
Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen
The formation of singlet oxygen by riboflavin and the kinetics and mechanisms of riboflavin degradation in aqueous solution under light were determined. The singlet oxygen formation rate by riboflavin was 2.31 micromole oxygen/mL headspace/h of serum bottle. The degradations of riboflavin were 66% i...
Saved in:
Published in: | Journal of food science 2004-12, Vol.69 (9), p.C726-C732 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The formation of singlet oxygen by riboflavin and the kinetics and mechanisms of riboflavin degradation in aqueous solution under light were determined. The singlet oxygen formation rate by riboflavin was 2.31 micromole oxygen/mL headspace/h of serum bottle. The degradations of riboflavin were 66% in D2O and 40% in H2O, respectively, under light after 24 h. The results indicate that singlet oxygen is involved in riboflavin destruction under light. The riboflavin destructions were 94.0% and 15.7% with 0 mM or 160 mM ascorbic acid, respectively, under light after 96 h. The reaction rate between riboflavin and singlet oxygen was 1.01 x 10(10)/M/s, which is a diffusion-controlled reaction rate. This explains the extremely fast degradation of riboflavin in foods under light. Ascorbic acid and sodium azide reduce the degradation of riboflavin under light with different quenching mechanisms. Ascorbic acid quenched both singlet oxygen and excited triplet riboflavin. Sodium azide quenched only the singlet oxygen in riboflavin solution with a quenching rate of 1.547 x 10(7)/M/s. With the involvement of both the Type-I and Type-II mechanisms in the riboflavin degradation under light, singlet oxygen quencher alone could not protect the riboflavin from degradation completely. Addition of ascorbic acid can protect riboflavin oxidation in foods exposed to light. |
---|---|
ISSN: | 0022-1147 1750-3841 |
DOI: | 10.1111/j.1365-2621.2004.tb09924.x |