Loading…

Design of Fast-Locked Digitally Controlled Low-Dropout Regulator for Ultra-low Voltage Input

This paper proposes a new design for a fast-locked digitally controlled low-dropout regulator (FDLDO) for an ultra-low voltage input. The proposed design involves a fast-locked control mechanism that reduces the settling time of the load transient response in the tracking mode and decreases the quie...

Full description

Saved in:
Bibliographic Details
Published in:Circuits, systems, and signal processing systems, and signal processing, 2017-12, Vol.36 (12), p.5041-5061
Main Authors: Yang, Wei-Bin, Lin, Yu-Yao, Lo, Yu-Lung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a new design for a fast-locked digitally controlled low-dropout regulator (FDLDO) for an ultra-low voltage input. The proposed design involves a fast-locked control mechanism that reduces the settling time of the load transient response in the tracking mode and decreases the quiescent current in the regulating mode. For an ultra-low input voltage of 0.35 V, the proposed FDLDO is capable of providing a regulated output voltage of 0.3 V with a dropout voltage of 50 mV and delivering a maximal load current of 2.4 mA with current and power efficiencies of 99.74 and 85.49%, respectively. Measurement results showed that in the regulating mode, the quiescent current is only 5.15  μ A for the maximal load current; furthermore, for the maximal load current, the load regulation and the line regulation are 1.5 mV/mA and 4.916 mV/V, respectively. Under the load regulation, the transient response time is less than 15  μ s . No external output capacitor is required to stabilize the control loop, and there is no external input clock. The proposed FDLDO is suitable for low-power system-on-a-chip applications of wearable electronic devices with an ultra-low supply voltage.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-017-0642-2