Loading…
Physical and mechanical properties of high-amylose rice and pea starch films as affected by relative humidity and plasticizer
The tensile properties, water vapor permeability, oxygen permeability at different relative humidities (RH), and water solubility of edible films made of high-amylose rice starch (RS) or pea starch (PS) were measured and compared with the most commonly used edible films. Photomicrography of starch f...
Saved in:
Published in: | Journal of food science 2004-12, Vol.69 (9), p.E449-E454 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The tensile properties, water vapor permeability, oxygen permeability at different relative humidities (RH), and water solubility of edible films made of high-amylose rice starch (RS) or pea starch (PS) were measured and compared with the most commonly used edible films. Photomicrography of starch films shows amylopectin-rich gels and amylose-rich granules. The addition of glycerol into starch films made amylose-rich granules swollen and continuously dispersed between amylopectin-rich gels. Tensile strength of RS and PS films decreased when RH increased from 51% to 90%, whereas elongation-at-break (E) of both films increased when RH increased. Water vapor permeabilities of both films were similar, resulting in 130 to 150 g mm/m2/d / kPa. Oxygen permeability of RS and PS were very low (< 0.5 cm3 micrometer/m2/d/kPa) below 40% RH, and 1.2 to 1.4 at 45% RH. Water solubility of PS film was 32.0%, which is lower than that of RS film (44.4%). Overall high-amylose rice and pea starch films possess an excellent oxygen barrier property with extremely high stretchability. |
---|---|
ISSN: | 0022-1147 1750-3841 |
DOI: | 10.1111/j.1365-2621.2004.tb09929.x |