Loading…
Directly Solving Special Second Order Delay Differential Equations Using Runge-Kutta-Nyström Method
Runge-Kutta-Nyström (RKN) method is adapted for solving the special second order delay differential equations (DDEs). The stability polynomial is obtained when this method is used for solving linear second order delay differential equation. A standard set of test problems is solved using the method...
Saved in:
Published in: | Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-7 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-29046fc33d8360ad977db6fca738e070ff7b8fa57ad22de8c739d2a84326a1153 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-29046fc33d8360ad977db6fca738e070ff7b8fa57ad22de8c739d2a84326a1153 |
container_end_page | 7 |
container_issue | 2013 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2013 |
creator | Siri, Z. Senu, Norazak Ismail, F. Mechee, M. |
description | Runge-Kutta-Nyström (RKN) method is adapted for solving the special second order delay differential equations (DDEs). The stability polynomial is obtained when this method is used for solving linear second order delay differential equation. A standard set of test problems is solved using the method together with a cubic interpolation for evaluating the delay terms. The same set of problems is reduced to a system of first order delay differential equations and then solved using the existing Runge-Kutta (RK) method. Numerical results show that the RKN method is more efficient in terms of accuracy and computational time when compared to RK method. The methods are applied to a well-known problem involving delay differential equations, that is, the Mathieu problem. The numerical comparison shows that both methods are in a good agreement. |
doi_str_mv | 10.1155/2013/830317 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1944192463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1944192463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-29046fc33d8360ad977db6fca738e070ff7b8fa57ad22de8c739d2a84326a1153</originalsourceid><addsrcrecordid>eNqF0E1PwyAYB3BiNHFOT94NiTdNHS9toUezzZc4XeJc4q1hBTaWrt2AavrF_AJ-MVnqwZsnnsAPnoc_AOcY3WCcJAOCMB1wiihmB6CHk5RGCY7ZYagRiSNM6PsxOHFujRDBCeY9IEfGqsKXLZzV5YeplnC2VYURJZypoq4knFqpLBypUrRwZLRWVlV-fz7eNcKbunJw7vb3XptqqaKnxnsRvbTO2--vDXxWflXLU3CkRenU2e_aB_O78dvwIZpM7x-Ht5OooEnqI5KhONUFpZLTFAmZMSYXYUMwyhViSGu24FokTEhCpOIFo5kkgseUpCL8n_bBZffu1ta7Rjmfr-vGVqFljrM4xhmJUxrUdacKWztnlc631myEbXOM8n2M-T7GvIsx6KtOr0wlxaf5B190WAWitPiDMeJh0B_E0Hw1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1944192463</pqid></control><display><type>article</type><title>Directly Solving Special Second Order Delay Differential Equations Using Runge-Kutta-Nyström Method</title><source>Wiley_OA刊</source><source>Publicly Available Content (ProQuest)</source><source>IngentaConnect Journals</source><creator>Siri, Z. ; Senu, Norazak ; Ismail, F. ; Mechee, M.</creator><contributor>Yi, Yang</contributor><creatorcontrib>Siri, Z. ; Senu, Norazak ; Ismail, F. ; Mechee, M. ; Yi, Yang</creatorcontrib><description>Runge-Kutta-Nyström (RKN) method is adapted for solving the special second order delay differential equations (DDEs). The stability polynomial is obtained when this method is used for solving linear second order delay differential equation. A standard set of test problems is solved using the method together with a cubic interpolation for evaluating the delay terms. The same set of problems is reduced to a system of first order delay differential equations and then solved using the existing Runge-Kutta (RK) method. Numerical results show that the RKN method is more efficient in terms of accuracy and computational time when compared to RK method. The methods are applied to a well-known problem involving delay differential equations, that is, the Mathieu problem. The numerical comparison shows that both methods are in a good agreement.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2013/830317</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied mathematics ; Delay ; Differential equations ; Engineering ; Mathematical analysis ; Mathematical problems ; Methods ; Neural networks ; Numerical analysis ; Ordinary differential equations ; Runge-Kutta method ; Studies</subject><ispartof>Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-7</ispartof><rights>Copyright © 2013 M. Mechee et al.</rights><rights>Copyright © 2013 M. Mechee et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-29046fc33d8360ad977db6fca738e070ff7b8fa57ad22de8c739d2a84326a1153</citedby><cites>FETCH-LOGICAL-c356t-29046fc33d8360ad977db6fca738e070ff7b8fa57ad22de8c739d2a84326a1153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1944192463/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1944192463?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><contributor>Yi, Yang</contributor><creatorcontrib>Siri, Z.</creatorcontrib><creatorcontrib>Senu, Norazak</creatorcontrib><creatorcontrib>Ismail, F.</creatorcontrib><creatorcontrib>Mechee, M.</creatorcontrib><title>Directly Solving Special Second Order Delay Differential Equations Using Runge-Kutta-Nyström Method</title><title>Mathematical problems in engineering</title><description>Runge-Kutta-Nyström (RKN) method is adapted for solving the special second order delay differential equations (DDEs). The stability polynomial is obtained when this method is used for solving linear second order delay differential equation. A standard set of test problems is solved using the method together with a cubic interpolation for evaluating the delay terms. The same set of problems is reduced to a system of first order delay differential equations and then solved using the existing Runge-Kutta (RK) method. Numerical results show that the RKN method is more efficient in terms of accuracy and computational time when compared to RK method. The methods are applied to a well-known problem involving delay differential equations, that is, the Mathieu problem. The numerical comparison shows that both methods are in a good agreement.</description><subject>Applied mathematics</subject><subject>Delay</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Numerical analysis</subject><subject>Ordinary differential equations</subject><subject>Runge-Kutta method</subject><subject>Studies</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0E1PwyAYB3BiNHFOT94NiTdNHS9toUezzZc4XeJc4q1hBTaWrt2AavrF_AJ-MVnqwZsnnsAPnoc_AOcY3WCcJAOCMB1wiihmB6CHk5RGCY7ZYagRiSNM6PsxOHFujRDBCeY9IEfGqsKXLZzV5YeplnC2VYURJZypoq4knFqpLBypUrRwZLRWVlV-fz7eNcKbunJw7vb3XptqqaKnxnsRvbTO2--vDXxWflXLU3CkRenU2e_aB_O78dvwIZpM7x-Ht5OooEnqI5KhONUFpZLTFAmZMSYXYUMwyhViSGu24FokTEhCpOIFo5kkgseUpCL8n_bBZffu1ta7Rjmfr-vGVqFljrM4xhmJUxrUdacKWztnlc631myEbXOM8n2M-T7GvIsx6KtOr0wlxaf5B190WAWitPiDMeJh0B_E0Hw1</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Siri, Z.</creator><creator>Senu, Norazak</creator><creator>Ismail, F.</creator><creator>Mechee, M.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130101</creationdate><title>Directly Solving Special Second Order Delay Differential Equations Using Runge-Kutta-Nyström Method</title><author>Siri, Z. ; Senu, Norazak ; Ismail, F. ; Mechee, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-29046fc33d8360ad977db6fca738e070ff7b8fa57ad22de8c739d2a84326a1153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied mathematics</topic><topic>Delay</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Numerical analysis</topic><topic>Ordinary differential equations</topic><topic>Runge-Kutta method</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siri, Z.</creatorcontrib><creatorcontrib>Senu, Norazak</creatorcontrib><creatorcontrib>Ismail, F.</creatorcontrib><creatorcontrib>Mechee, M.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siri, Z.</au><au>Senu, Norazak</au><au>Ismail, F.</au><au>Mechee, M.</au><au>Yi, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directly Solving Special Second Order Delay Differential Equations Using Runge-Kutta-Nyström Method</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Runge-Kutta-Nyström (RKN) method is adapted for solving the special second order delay differential equations (DDEs). The stability polynomial is obtained when this method is used for solving linear second order delay differential equation. A standard set of test problems is solved using the method together with a cubic interpolation for evaluating the delay terms. The same set of problems is reduced to a system of first order delay differential equations and then solved using the existing Runge-Kutta (RK) method. Numerical results show that the RKN method is more efficient in terms of accuracy and computational time when compared to RK method. The methods are applied to a well-known problem involving delay differential equations, that is, the Mathieu problem. The numerical comparison shows that both methods are in a good agreement.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/830317</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-7 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_1944192463 |
source | Wiley_OA刊; Publicly Available Content (ProQuest); IngentaConnect Journals |
subjects | Applied mathematics Delay Differential equations Engineering Mathematical analysis Mathematical problems Methods Neural networks Numerical analysis Ordinary differential equations Runge-Kutta method Studies |
title | Directly Solving Special Second Order Delay Differential Equations Using Runge-Kutta-Nyström Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directly%20Solving%20Special%20Second%20Order%20Delay%20Differential%20Equations%20Using%20Runge-Kutta-Nystr%C3%B6m%20Method&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Siri,%20Z.&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2013/830317&rft_dat=%3Cproquest_cross%3E1944192463%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-29046fc33d8360ad977db6fca738e070ff7b8fa57ad22de8c739d2a84326a1153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1944192463&rft_id=info:pmid/&rfr_iscdi=true |