Loading…

Radical‐Enhanced Charge Transport in Single‐Molecule Phenothiazine Electrical Junctions

We studied the single‐molecule conductance through an acid oxidant triggered phenothiazine (PTZ‐) based radical junction using the mechanically controllable break junction technique. The electrical conductance of the radical state was enhanced by up to 200 times compared to the neutral state, with h...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2017-10, Vol.129 (42), p.13241-13245
Main Authors: Liu, Junyang, Zhao, Xiaotao, Al‐Galiby, Qusiy, Huang, Xiaoyan, Zheng, Jueting, Li, Ruihao, Huang, Cancan, Yang, Yang, Shi, Jia, Manrique, David Zsolt, Lambert, Colin J., Bryce, Martin R., Hong, Wenjing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We studied the single‐molecule conductance through an acid oxidant triggered phenothiazine (PTZ‐) based radical junction using the mechanically controllable break junction technique. The electrical conductance of the radical state was enhanced by up to 200 times compared to the neutral state, with high stability lasting for at least two months and high junction formation probability at room‐temperature. Theoretical studies revealed that the conductance increase is due to a significant decrease of the HOMO–LUMO gap and also the enhanced transmission close to the HOMO orbital when the radical forms. The large conductance enhancement induced by the formation of the stable PTZ radical molecule will lead to promising applications in single‐molecule electronics and spintronics. Die Einzelmolekülleitfähigkeit von Phenothiazinradikalen wurde mit der mechanisch kontrollierten Bruchkontaktmethode bestimmt. Ausgelöst durch ein saures Oxidationsmittel steigert das Radikalkation des Phenothiazins mit hoher Stabilität und Wahrscheinlichkeit der Kontaktbildung bei Raumtemperatur die Ladungstransporteigenschaft bis auf das 200‐Fache, was vielversprechende Anwendungen in der Einzelmolekülelektronik und Spintronik aufzeigt.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201707710