Loading…
On the Design of Optimization Strategies Based on Global Response Surface Approximation Models
Striking the correct balance between global exploration of search spaces and local exploitation of promising basins of attraction is one of the principal concerns in the design of global optimization algorithms. This is true in the case of techniques based on global response surface approximation mo...
Saved in:
Published in: | Journal of global optimization 2005-09, Vol.33 (1), p.31-59 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73 |
container_end_page | 59 |
container_issue | 1 |
container_start_page | 31 |
container_title | Journal of global optimization |
container_volume | 33 |
creator | Sóbester, András Leary, Stephen J. Keane, Andy J. |
description | Striking the correct balance between global exploration of search spaces and local exploitation of promising basins of attraction is one of the principal concerns in the design of global optimization algorithms. This is true in the case of techniques based on global response surface approximation models as well. After constructing such a model using some initial database of designs it is far from obvious how to select further points to examine so that the appropriate mix of exploration and exploitation is achieved. In this paper we propose a selection criterion based on the expected improvement measure, which allows relatively precise control of the scope of the search. We investigate its behavior through a set of artificial test functions and two structural optimization problems. We also look at another aspect of setting up search heuristics of this type: the choice of the size of the database that the initial approximation is built upon. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s10898-004-6733-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194667101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>942626671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73</originalsourceid><addsrcrecordid>eNotkFFLwzAQx4MoOKcfwLfge_QuaZr2cU6dgjJw-mpI28vs6JradKB-ejvm08Hx_9_9-DF2iXCNAOYmImR5JgASkRqlBB6xCWqjhMwxPWYTyKUWGgBP2VmMGwDIMy0n7GPZ8uGT-B3Fet3y4PmyG-pt_euGOrR8NfRuoHVNkd-6SBUfd4smFK7hrxS70Ebiq13vXUl81nV9-K63h-ZLqKiJ5-zEuybSxf-csveH-7f5o3heLp7ms2dRqgwHkXowThokUxZSaqkJoUyrxJdlklPlQbtKJqggG6GlKiRkSaV8leuCqCqMmrKrw90R4WtHcbCbsOvb8aXFPElTg4BjCA-hsg8x9uRt14-4_Y9FsHuL9mDRjhbt3qJF9QfEIGVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194667101</pqid></control><display><type>article</type><title>On the Design of Optimization Strategies Based on Global Response Surface Approximation Models</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Sóbester, András ; Leary, Stephen J. ; Keane, Andy J.</creator><creatorcontrib>Sóbester, András ; Leary, Stephen J. ; Keane, Andy J.</creatorcontrib><description>Striking the correct balance between global exploration of search spaces and local exploitation of promising basins of attraction is one of the principal concerns in the design of global optimization algorithms. This is true in the case of techniques based on global response surface approximation models as well. After constructing such a model using some initial database of designs it is far from obvious how to select further points to examine so that the appropriate mix of exploration and exploitation is achieved. In this paper we propose a selection criterion based on the expected improvement measure, which allows relatively precise control of the scope of the search. We investigate its behavior through a set of artificial test functions and two structural optimization problems. We also look at another aspect of setting up search heuristics of this type: the choice of the size of the database that the initial approximation is built upon. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-004-6733-1</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Approximation ; Design of experiments ; Design optimization ; Engineering schools ; Exploitation ; Heuristic ; Operations research ; Optimization algorithms ; Optimization techniques ; Physics ; Studies</subject><ispartof>Journal of global optimization, 2005-09, Vol.33 (1), p.31-59</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73</citedby><cites>FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/194667101/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/194667101?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,11671,27907,27908,36043,44346,74646</link.rule.ids></links><search><creatorcontrib>Sóbester, András</creatorcontrib><creatorcontrib>Leary, Stephen J.</creatorcontrib><creatorcontrib>Keane, Andy J.</creatorcontrib><title>On the Design of Optimization Strategies Based on Global Response Surface Approximation Models</title><title>Journal of global optimization</title><description>Striking the correct balance between global exploration of search spaces and local exploitation of promising basins of attraction is one of the principal concerns in the design of global optimization algorithms. This is true in the case of techniques based on global response surface approximation models as well. After constructing such a model using some initial database of designs it is far from obvious how to select further points to examine so that the appropriate mix of exploration and exploitation is achieved. In this paper we propose a selection criterion based on the expected improvement measure, which allows relatively precise control of the scope of the search. We investigate its behavior through a set of artificial test functions and two structural optimization problems. We also look at another aspect of setting up search heuristics of this type: the choice of the size of the database that the initial approximation is built upon. [PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Engineering schools</subject><subject>Exploitation</subject><subject>Heuristic</subject><subject>Operations research</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Physics</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotkFFLwzAQx4MoOKcfwLfge_QuaZr2cU6dgjJw-mpI28vs6JradKB-ejvm08Hx_9_9-DF2iXCNAOYmImR5JgASkRqlBB6xCWqjhMwxPWYTyKUWGgBP2VmMGwDIMy0n7GPZ8uGT-B3Fet3y4PmyG-pt_euGOrR8NfRuoHVNkd-6SBUfd4smFK7hrxS70Ebiq13vXUl81nV9-K63h-ZLqKiJ5-zEuybSxf-csveH-7f5o3heLp7ms2dRqgwHkXowThokUxZSaqkJoUyrxJdlklPlQbtKJqggG6GlKiRkSaV8leuCqCqMmrKrw90R4WtHcbCbsOvb8aXFPElTg4BjCA-hsg8x9uRt14-4_Y9FsHuL9mDRjhbt3qJF9QfEIGVs</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Sóbester, András</creator><creator>Leary, Stephen J.</creator><creator>Keane, Andy J.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200509</creationdate><title>On the Design of Optimization Strategies Based on Global Response Surface Approximation Models</title><author>Sóbester, András ; Leary, Stephen J. ; Keane, Andy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Engineering schools</topic><topic>Exploitation</topic><topic>Heuristic</topic><topic>Operations research</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Physics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sóbester, András</creatorcontrib><creatorcontrib>Leary, Stephen J.</creatorcontrib><creatorcontrib>Keane, Andy J.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sóbester, András</au><au>Leary, Stephen J.</au><au>Keane, Andy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Design of Optimization Strategies Based on Global Response Surface Approximation Models</atitle><jtitle>Journal of global optimization</jtitle><date>2005-09</date><risdate>2005</risdate><volume>33</volume><issue>1</issue><spage>31</spage><epage>59</epage><pages>31-59</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>Striking the correct balance between global exploration of search spaces and local exploitation of promising basins of attraction is one of the principal concerns in the design of global optimization algorithms. This is true in the case of techniques based on global response surface approximation models as well. After constructing such a model using some initial database of designs it is far from obvious how to select further points to examine so that the appropriate mix of exploration and exploitation is achieved. In this paper we propose a selection criterion based on the expected improvement measure, which allows relatively precise control of the scope of the search. We investigate its behavior through a set of artificial test functions and two structural optimization problems. We also look at another aspect of setting up search heuristics of this type: the choice of the size of the database that the initial approximation is built upon. [PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10898-004-6733-1</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2005-09, Vol.33 (1), p.31-59 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_194667101 |
source | ABI/INFORM Global; Springer Link |
subjects | Approximation Design of experiments Design optimization Engineering schools Exploitation Heuristic Operations research Optimization algorithms Optimization techniques Physics Studies |
title | On the Design of Optimization Strategies Based on Global Response Surface Approximation Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Design%20of%20Optimization%20Strategies%20Based%20on%20Global%20Response%20Surface%20Approximation%20Models&rft.jtitle=Journal%20of%20global%20optimization&rft.au=S%C3%B3bester,%20Andr%C3%A1s&rft.date=2005-09&rft.volume=33&rft.issue=1&rft.spage=31&rft.epage=59&rft.pages=31-59&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-004-6733-1&rft_dat=%3Cproquest_cross%3E942626671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194667101&rft_id=info:pmid/&rfr_iscdi=true |