Loading…

On the Design of Optimization Strategies Based on Global Response Surface Approximation Models

Striking the correct balance between global exploration of search spaces and local exploitation of promising basins of attraction is one of the principal concerns in the design of global optimization algorithms. This is true in the case of techniques based on global response surface approximation mo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of global optimization 2005-09, Vol.33 (1), p.31-59
Main Authors: Sóbester, András, Leary, Stephen J., Keane, Andy J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73
cites cdi_FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73
container_end_page 59
container_issue 1
container_start_page 31
container_title Journal of global optimization
container_volume 33
creator Sóbester, András
Leary, Stephen J.
Keane, Andy J.
description Striking the correct balance between global exploration of search spaces and local exploitation of promising basins of attraction is one of the principal concerns in the design of global optimization algorithms. This is true in the case of techniques based on global response surface approximation models as well. After constructing such a model using some initial database of designs it is far from obvious how to select further points to examine so that the appropriate mix of exploration and exploitation is achieved. In this paper we propose a selection criterion based on the expected improvement measure, which allows relatively precise control of the scope of the search. We investigate its behavior through a set of artificial test functions and two structural optimization problems. We also look at another aspect of setting up search heuristics of this type: the choice of the size of the database that the initial approximation is built upon. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10898-004-6733-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194667101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>942626671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73</originalsourceid><addsrcrecordid>eNotkFFLwzAQx4MoOKcfwLfge_QuaZr2cU6dgjJw-mpI28vs6JradKB-ejvm08Hx_9_9-DF2iXCNAOYmImR5JgASkRqlBB6xCWqjhMwxPWYTyKUWGgBP2VmMGwDIMy0n7GPZ8uGT-B3Fet3y4PmyG-pt_euGOrR8NfRuoHVNkd-6SBUfd4smFK7hrxS70Ebiq13vXUl81nV9-K63h-ZLqKiJ5-zEuybSxf-csveH-7f5o3heLp7ms2dRqgwHkXowThokUxZSaqkJoUyrxJdlklPlQbtKJqggG6GlKiRkSaV8leuCqCqMmrKrw90R4WtHcbCbsOvb8aXFPElTg4BjCA-hsg8x9uRt14-4_Y9FsHuL9mDRjhbt3qJF9QfEIGVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194667101</pqid></control><display><type>article</type><title>On the Design of Optimization Strategies Based on Global Response Surface Approximation Models</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Sóbester, András ; Leary, Stephen J. ; Keane, Andy J.</creator><creatorcontrib>Sóbester, András ; Leary, Stephen J. ; Keane, Andy J.</creatorcontrib><description>Striking the correct balance between global exploration of search spaces and local exploitation of promising basins of attraction is one of the principal concerns in the design of global optimization algorithms. This is true in the case of techniques based on global response surface approximation models as well. After constructing such a model using some initial database of designs it is far from obvious how to select further points to examine so that the appropriate mix of exploration and exploitation is achieved. In this paper we propose a selection criterion based on the expected improvement measure, which allows relatively precise control of the scope of the search. We investigate its behavior through a set of artificial test functions and two structural optimization problems. We also look at another aspect of setting up search heuristics of this type: the choice of the size of the database that the initial approximation is built upon. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-004-6733-1</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Approximation ; Design of experiments ; Design optimization ; Engineering schools ; Exploitation ; Heuristic ; Operations research ; Optimization algorithms ; Optimization techniques ; Physics ; Studies</subject><ispartof>Journal of global optimization, 2005-09, Vol.33 (1), p.31-59</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73</citedby><cites>FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/194667101/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/194667101?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,11671,27907,27908,36043,44346,74646</link.rule.ids></links><search><creatorcontrib>Sóbester, András</creatorcontrib><creatorcontrib>Leary, Stephen J.</creatorcontrib><creatorcontrib>Keane, Andy J.</creatorcontrib><title>On the Design of Optimization Strategies Based on Global Response Surface Approximation Models</title><title>Journal of global optimization</title><description>Striking the correct balance between global exploration of search spaces and local exploitation of promising basins of attraction is one of the principal concerns in the design of global optimization algorithms. This is true in the case of techniques based on global response surface approximation models as well. After constructing such a model using some initial database of designs it is far from obvious how to select further points to examine so that the appropriate mix of exploration and exploitation is achieved. In this paper we propose a selection criterion based on the expected improvement measure, which allows relatively precise control of the scope of the search. We investigate its behavior through a set of artificial test functions and two structural optimization problems. We also look at another aspect of setting up search heuristics of this type: the choice of the size of the database that the initial approximation is built upon. [PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Engineering schools</subject><subject>Exploitation</subject><subject>Heuristic</subject><subject>Operations research</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Physics</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotkFFLwzAQx4MoOKcfwLfge_QuaZr2cU6dgjJw-mpI28vs6JradKB-ejvm08Hx_9_9-DF2iXCNAOYmImR5JgASkRqlBB6xCWqjhMwxPWYTyKUWGgBP2VmMGwDIMy0n7GPZ8uGT-B3Fet3y4PmyG-pt_euGOrR8NfRuoHVNkd-6SBUfd4smFK7hrxS70Ebiq13vXUl81nV9-K63h-ZLqKiJ5-zEuybSxf-csveH-7f5o3heLp7ms2dRqgwHkXowThokUxZSaqkJoUyrxJdlklPlQbtKJqggG6GlKiRkSaV8leuCqCqMmrKrw90R4WtHcbCbsOvb8aXFPElTg4BjCA-hsg8x9uRt14-4_Y9FsHuL9mDRjhbt3qJF9QfEIGVs</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Sóbester, András</creator><creator>Leary, Stephen J.</creator><creator>Keane, Andy J.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200509</creationdate><title>On the Design of Optimization Strategies Based on Global Response Surface Approximation Models</title><author>Sóbester, András ; Leary, Stephen J. ; Keane, Andy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Engineering schools</topic><topic>Exploitation</topic><topic>Heuristic</topic><topic>Operations research</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Physics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sóbester, András</creatorcontrib><creatorcontrib>Leary, Stephen J.</creatorcontrib><creatorcontrib>Keane, Andy J.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sóbester, András</au><au>Leary, Stephen J.</au><au>Keane, Andy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Design of Optimization Strategies Based on Global Response Surface Approximation Models</atitle><jtitle>Journal of global optimization</jtitle><date>2005-09</date><risdate>2005</risdate><volume>33</volume><issue>1</issue><spage>31</spage><epage>59</epage><pages>31-59</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>Striking the correct balance between global exploration of search spaces and local exploitation of promising basins of attraction is one of the principal concerns in the design of global optimization algorithms. This is true in the case of techniques based on global response surface approximation models as well. After constructing such a model using some initial database of designs it is far from obvious how to select further points to examine so that the appropriate mix of exploration and exploitation is achieved. In this paper we propose a selection criterion based on the expected improvement measure, which allows relatively precise control of the scope of the search. We investigate its behavior through a set of artificial test functions and two structural optimization problems. We also look at another aspect of setting up search heuristics of this type: the choice of the size of the database that the initial approximation is built upon. [PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10898-004-6733-1</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2005-09, Vol.33 (1), p.31-59
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_194667101
source ABI/INFORM Global; Springer Link
subjects Approximation
Design of experiments
Design optimization
Engineering schools
Exploitation
Heuristic
Operations research
Optimization algorithms
Optimization techniques
Physics
Studies
title On the Design of Optimization Strategies Based on Global Response Surface Approximation Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Design%20of%20Optimization%20Strategies%20Based%20on%20Global%20Response%20Surface%20Approximation%20Models&rft.jtitle=Journal%20of%20global%20optimization&rft.au=S%C3%B3bester,%20Andr%C3%A1s&rft.date=2005-09&rft.volume=33&rft.issue=1&rft.spage=31&rft.epage=59&rft.pages=31-59&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-004-6733-1&rft_dat=%3Cproquest_cross%3E942626671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-6f07a271e7cb22525e10c6d4fcc49edf05ad24130885223b2084d3fd95beedb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194667101&rft_id=info:pmid/&rfr_iscdi=true