Loading…
A branch-and-bound algorithm for maximizing the sum of several linear ratios
In this paper, we develop a branch-and-bound algorithm for maximizing a sum of p (≥slant2) linear ratios on a polytope. The problem is embedded into a 2p-dimensional space, in which a concave polyhedral function overestimating the optimal value is constructed for the bounding operation. The branchin...
Saved in:
Published in: | Journal of global optimization 2002-01, Vol.22 (1-4), p.155 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-fd8c57f96fcd1a66302abdf6d63d702a462a7da336e469aefcb04840a33dcbc53 |
---|---|
cites | |
container_end_page | |
container_issue | 1-4 |
container_start_page | 155 |
container_title | Journal of global optimization |
container_volume | 22 |
creator | Kuno, Takahito |
description | In this paper, we develop a branch-and-bound algorithm for maximizing a sum of p (≥slant2) linear ratios on a polytope. The problem is embedded into a 2p-dimensional space, in which a concave polyhedral function overestimating the optimal value is constructed for the bounding operation. The branching operation is carried out in a p-dimensional space, in a way similar to the usual rectangular branch-and-bound method. We discuss the convergence properties and report some computational results. |
doi_str_mv | 10.1023/A:1013807129844 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_194677080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>945078091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-fd8c57f96fcd1a66302abdf6d63d702a462a7da336e469aefcb04840a33dcbc53</originalsourceid><addsrcrecordid>eNotjUtLxDAURoMoOI6u3Qb30ZtHk8bdMPiCATe6Hm7zmHZoG01aEX-9BV19h7M4HyHXHG45CHm3uefAZQ2GC1srdUJWvDKSCcv1KVmBFRWrAPg5uSjlCAC2rsSK7Da0yTi6luHoWZPm0VPsDyl3UzvQmDId8Lsbup9uPNCpDbTMA02RlvAVMva078aAmWaculQuyVnEvoSr_12T98eHt-0z270-vWw3O-aEVROLvnaViVZH5zlqLUFg46P2WnqzsNICjUcpdVDaYoiuAVUrWIx3javkmtz8dT9y-pxDmfbHNOdxudxzq7QxUIP8BaxgT-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194677080</pqid></control><display><type>article</type><title>A branch-and-bound algorithm for maximizing the sum of several linear ratios</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Kuno, Takahito</creator><creatorcontrib>Kuno, Takahito</creatorcontrib><description>In this paper, we develop a branch-and-bound algorithm for maximizing a sum of p (≥slant2) linear ratios on a polytope. The problem is embedded into a 2p-dimensional space, in which a concave polyhedral function overestimating the optimal value is constructed for the bounding operation. The branching operation is carried out in a p-dimensional space, in a way similar to the usual rectangular branch-and-bound method. We discuss the convergence properties and report some computational results.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1023/A:1013807129844</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Bond portfolios ; Linear programming ; Optimization ; Ratios</subject><ispartof>Journal of global optimization, 2002-01, Vol.22 (1-4), p.155</ispartof><rights>Kluwer Academic Publishers 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-fd8c57f96fcd1a66302abdf6d63d702a462a7da336e469aefcb04840a33dcbc53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/194677080/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/194677080?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Kuno, Takahito</creatorcontrib><title>A branch-and-bound algorithm for maximizing the sum of several linear ratios</title><title>Journal of global optimization</title><description>In this paper, we develop a branch-and-bound algorithm for maximizing a sum of p (≥slant2) linear ratios on a polytope. The problem is embedded into a 2p-dimensional space, in which a concave polyhedral function overestimating the optimal value is constructed for the bounding operation. The branching operation is carried out in a p-dimensional space, in a way similar to the usual rectangular branch-and-bound method. We discuss the convergence properties and report some computational results.</description><subject>Algorithms</subject><subject>Bond portfolios</subject><subject>Linear programming</subject><subject>Optimization</subject><subject>Ratios</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotjUtLxDAURoMoOI6u3Qb30ZtHk8bdMPiCATe6Hm7zmHZoG01aEX-9BV19h7M4HyHXHG45CHm3uefAZQ2GC1srdUJWvDKSCcv1KVmBFRWrAPg5uSjlCAC2rsSK7Da0yTi6luHoWZPm0VPsDyl3UzvQmDId8Lsbup9uPNCpDbTMA02RlvAVMva078aAmWaculQuyVnEvoSr_12T98eHt-0z270-vWw3O-aEVROLvnaViVZH5zlqLUFg46P2WnqzsNICjUcpdVDaYoiuAVUrWIx3javkmtz8dT9y-pxDmfbHNOdxudxzq7QxUIP8BaxgT-E</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Kuno, Takahito</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020101</creationdate><title>A branch-and-bound algorithm for maximizing the sum of several linear ratios</title><author>Kuno, Takahito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-fd8c57f96fcd1a66302abdf6d63d702a462a7da336e469aefcb04840a33dcbc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Bond portfolios</topic><topic>Linear programming</topic><topic>Optimization</topic><topic>Ratios</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuno, Takahito</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuno, Takahito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A branch-and-bound algorithm for maximizing the sum of several linear ratios</atitle><jtitle>Journal of global optimization</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>22</volume><issue>1-4</issue><spage>155</spage><pages>155-</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>In this paper, we develop a branch-and-bound algorithm for maximizing a sum of p (≥slant2) linear ratios on a polytope. The problem is embedded into a 2p-dimensional space, in which a concave polyhedral function overestimating the optimal value is constructed for the bounding operation. The branching operation is carried out in a p-dimensional space, in a way similar to the usual rectangular branch-and-bound method. We discuss the convergence properties and report some computational results.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1013807129844</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2002-01, Vol.22 (1-4), p.155 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_194677080 |
source | ABI/INFORM global; Springer Link |
subjects | Algorithms Bond portfolios Linear programming Optimization Ratios |
title | A branch-and-bound algorithm for maximizing the sum of several linear ratios |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20branch-and-bound%20algorithm%20for%20maximizing%20the%20sum%20of%20several%20linear%20ratios&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Kuno,%20Takahito&rft.date=2002-01-01&rft.volume=22&rft.issue=1-4&rft.spage=155&rft.pages=155-&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1023/A:1013807129844&rft_dat=%3Cproquest%3E945078091%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-fd8c57f96fcd1a66302abdf6d63d702a462a7da336e469aefcb04840a33dcbc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194677080&rft_id=info:pmid/&rfr_iscdi=true |