Loading…
Movement prediction for a lower limb exoskeleton using a conditional restricted Boltzmann machine
We propose a novel class of unsupervised learning-based algorithms that extend the conditional restricted Boltzmann machine to predict, in real-time, a lower limb exoskeleton wearer's intended movement type and future trajectory. During training, our algorithm automatically clusters unlabeled e...
Saved in:
Published in: | Robotica 2017-11, Vol.35 (11), p.2177-2200 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a novel class of unsupervised learning-based algorithms that extend the conditional restricted Boltzmann machine to predict, in real-time, a lower limb exoskeleton wearer's intended movement type and future trajectory. During training, our algorithm automatically clusters unlabeled exoskeletal measurement data into movement types. Our predictor then takes as input a short time series of measurements, and outputs in real-time both the movement type and the forward trajectory time series. Physical experiments with a prototype exoskeleton demonstrate that our method more accurately and stably predicts both movement type and the forward trajectory compared to existing methods. |
---|---|
ISSN: | 0263-5747 1469-8668 |
DOI: | 10.1017/S0263574716000795 |