Loading…
Effect of structural disparity of graphene-based materials on thermo-mechanical and surface properties of thermoplastic polyurethane nanocomposites
Nanocomposites based on thermoplastic polyurethane (TPU) and graphene-based materials such as graphene oxide (GO) and reduced graphene oxide (RGO) was synthesized by in-situ solution polymerization technique. The effect of structural differences between GO and RGO in the thermo-mechanical and surfac...
Saved in:
Published in: | Polymer (Guilford) 2017-06, Vol.119, p.118-133 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanocomposites based on thermoplastic polyurethane (TPU) and graphene-based materials such as graphene oxide (GO) and reduced graphene oxide (RGO) was synthesized by in-situ solution polymerization technique. The effect of structural differences between GO and RGO in the thermo-mechanical and surface properties of TPU at ultralow concentration was the foremost aspiration of this work. TPU/GO nanocomposites exhibited superior mechanical properties compared to TPU/RGO nanocomposites at very low loading. With the incorporation of 0.10 wt% of GO, the resultant nanocomposite showed 280% increase in tensile strength and 410% increase in toughness. Interestingly, the elongation at break nanocomposite increased from 588% for pristine TPU to 1006% for TPU/GO-0.10. Property improvement of RGO filled nanocomposite was not so prominent as compared to GO filled nanocomposites. Thermal stability of the nanocomposites as examined by thermogravimetric analysis (TGA) depicted a 12 °C increase in thermal stability for 0.2 wt% GO filled nanocomposite whereas the same for RGO filled nanocomposite was only 6 °C. Contact angle study revealed that the RGO filled nanocomposites were becoming more hydrophobic whereas GO filled nanocomposites films showed the opposite trend.
[Display omitted]
•Discussed the structural disparity of GO and RGO on the properties of thermoplastic polyurethane.•Huge improvement in thermo-mechanical properties at ultra-low loading.•Structure-property co-relation established in polyurethane nanocomposites.•Different nature of composite surfaces was highlighted. |
---|---|
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2017.05.019 |