Loading…

Effect of structural disparity of graphene-based materials on thermo-mechanical and surface properties of thermoplastic polyurethane nanocomposites

Nanocomposites based on thermoplastic polyurethane (TPU) and graphene-based materials such as graphene oxide (GO) and reduced graphene oxide (RGO) was synthesized by in-situ solution polymerization technique. The effect of structural differences between GO and RGO in the thermo-mechanical and surfac...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2017-06, Vol.119, p.118-133
Main Authors: Bera, Madhab, Maji, Pradip K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanocomposites based on thermoplastic polyurethane (TPU) and graphene-based materials such as graphene oxide (GO) and reduced graphene oxide (RGO) was synthesized by in-situ solution polymerization technique. The effect of structural differences between GO and RGO in the thermo-mechanical and surface properties of TPU at ultralow concentration was the foremost aspiration of this work. TPU/GO nanocomposites exhibited superior mechanical properties compared to TPU/RGO nanocomposites at very low loading. With the incorporation of 0.10 wt% of GO, the resultant nanocomposite showed 280% increase in tensile strength and 410% increase in toughness. Interestingly, the elongation at break nanocomposite increased from 588% for pristine TPU to 1006% for TPU/GO-0.10. Property improvement of RGO filled nanocomposite was not so prominent as compared to GO filled nanocomposites. Thermal stability of the nanocomposites as examined by thermogravimetric analysis (TGA) depicted a 12 °C increase in thermal stability for 0.2 wt% GO filled nanocomposite whereas the same for RGO filled nanocomposite was only 6 °C. Contact angle study revealed that the RGO filled nanocomposites were becoming more hydrophobic whereas GO filled nanocomposites films showed the opposite trend. [Display omitted] •Discussed the structural disparity of GO and RGO on the properties of thermoplastic polyurethane.•Huge improvement in thermo-mechanical properties at ultra-low loading.•Structure-property co-relation established in polyurethane nanocomposites.•Different nature of composite surfaces was highlighted.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2017.05.019