Loading…

Bio Focus: Small tissue reprogramming device designed to heal damaged tissues

Described recently in Nature Nanotechnology (doi:10.1038/NNANO.2017.134), TNT was used to reprogram skin cells in mice to become vascular (blood vessel) cells in badly injured legs that lacked blood flow, ultimately saving the legs within a short time. A decade ago, researchers from Japan and the Un...

Full description

Saved in:
Bibliographic Details
Published in:MRS bulletin 2017-10, Vol.42 (10), p.695-696
Main Author: Bennington-Castro, Joseph
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 696
container_issue 10
container_start_page 695
container_title MRS bulletin
container_volume 42
creator Bennington-Castro, Joseph
description Described recently in Nature Nanotechnology (doi:10.1038/NNANO.2017.134), TNT was used to reprogram skin cells in mice to become vascular (blood vessel) cells in badly injured legs that lacked blood flow, ultimately saving the legs within a short time. A decade ago, researchers from Japan and the United States showed that they could use gene-carrying viruses to transform adult skin cells into so-called induced pluripotent stem cells (iPS cells)--cells resembling embryonic stem cells that can then develop into other types of cells. When an intense, focused electric field is applied through the arrayed nanochannels, tissue cell membranes in contact with the device are benignly nanoporated (exposed to nanosecond electric pulses that reversibly increase membrane permeability) and reprogramming factors are electrophoretically driven into the cells.
doi_str_mv 10.1557/mrs.2017.218
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1948915524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2017_218</cupid><sourcerecordid>1948915524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-1ed33573b0dbea855f47fccce578e484b962a5aafd3c0ef9ee6908d6e5e6704b3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7e_AEBr7YmTdKk3nRxVVjxoJ5Dmkxrl36sSVfw35u6e_AgeBoGnved4UHonJKUCiGvOh_SjFCZZlQdoBktmEooz8QhmhGlWCLzgh-jkxDWhFBBpJihp9tmwMvBbsM1fulM2-KxCWEL2MPGD7U3Xdf0NXbw2ViIIzR1Dw6PA34H02JnOlNP-08onKKjyrQBzvZzjt6Wd6-Lh2T1fP-4uFklNsvFmFBwjAnJSuJKMEqIisvKWgtCKuCKl0WeGWFM5ZglUBUAeUGUy0FALgkv2Rxd7Hrjjx_x7qjXw9b38aSmBVdFtJHxSF3uKOuHEDxUeuObzvgvTYmehOkoTE_CdBQW8WSHh4j1NfhfpX_z6b7edKVvXA3_BL4Bg519Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948915524</pqid></control><display><type>article</type><title>Bio Focus: Small tissue reprogramming device designed to heal damaged tissues</title><source>Springer Nature</source><creator>Bennington-Castro, Joseph</creator><creatorcontrib>Bennington-Castro, Joseph</creatorcontrib><description>Described recently in Nature Nanotechnology (doi:10.1038/NNANO.2017.134), TNT was used to reprogram skin cells in mice to become vascular (blood vessel) cells in badly injured legs that lacked blood flow, ultimately saving the legs within a short time. A decade ago, researchers from Japan and the United States showed that they could use gene-carrying viruses to transform adult skin cells into so-called induced pluripotent stem cells (iPS cells)--cells resembling embryonic stem cells that can then develop into other types of cells. When an intense, focused electric field is applied through the arrayed nanochannels, tissue cell membranes in contact with the device are benignly nanoporated (exposed to nanosecond electric pulses that reversibly increase membrane permeability) and reprogramming factors are electrophoretically driven into the cells.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2017.218</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Brain ; Characterization and Evaluation of Materials ; Energy Materials ; Fibroblasts ; Genetic engineering ; Materials Engineering ; Materials News ; Materials Science ; Nanotechnology ; News &amp; Analysis ; Permeability ; Researchers ; Silicon nitride ; Silicon wafers ; Skin ; Stem cells ; Studies</subject><ispartof>MRS bulletin, 2017-10, Vol.42 (10), p.695-696</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>Copyright © Materials Research Society 2017 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bennington-Castro, Joseph</creatorcontrib><title>Bio Focus: Small tissue reprogramming device designed to heal damaged tissues</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Described recently in Nature Nanotechnology (doi:10.1038/NNANO.2017.134), TNT was used to reprogram skin cells in mice to become vascular (blood vessel) cells in badly injured legs that lacked blood flow, ultimately saving the legs within a short time. A decade ago, researchers from Japan and the United States showed that they could use gene-carrying viruses to transform adult skin cells into so-called induced pluripotent stem cells (iPS cells)--cells resembling embryonic stem cells that can then develop into other types of cells. When an intense, focused electric field is applied through the arrayed nanochannels, tissue cell membranes in contact with the device are benignly nanoporated (exposed to nanosecond electric pulses that reversibly increase membrane permeability) and reprogramming factors are electrophoretically driven into the cells.</description><subject>Applied and Technical Physics</subject><subject>Brain</subject><subject>Characterization and Evaluation of Materials</subject><subject>Energy Materials</subject><subject>Fibroblasts</subject><subject>Genetic engineering</subject><subject>Materials Engineering</subject><subject>Materials News</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>News &amp; Analysis</subject><subject>Permeability</subject><subject>Researchers</subject><subject>Silicon nitride</subject><subject>Silicon wafers</subject><subject>Skin</subject><subject>Stem cells</subject><subject>Studies</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7e_AEBr7YmTdKk3nRxVVjxoJ5Dmkxrl36sSVfw35u6e_AgeBoGnved4UHonJKUCiGvOh_SjFCZZlQdoBktmEooz8QhmhGlWCLzgh-jkxDWhFBBpJihp9tmwMvBbsM1fulM2-KxCWEL2MPGD7U3Xdf0NXbw2ViIIzR1Dw6PA34H02JnOlNP-08onKKjyrQBzvZzjt6Wd6-Lh2T1fP-4uFklNsvFmFBwjAnJSuJKMEqIisvKWgtCKuCKl0WeGWFM5ZglUBUAeUGUy0FALgkv2Rxd7Hrjjx_x7qjXw9b38aSmBVdFtJHxSF3uKOuHEDxUeuObzvgvTYmehOkoTE_CdBQW8WSHh4j1NfhfpX_z6b7edKVvXA3_BL4Bg519Zg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Bennington-Castro, Joseph</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20171001</creationdate><title>Bio Focus: Small tissue reprogramming device designed to heal damaged tissues</title><author>Bennington-Castro, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-1ed33573b0dbea855f47fccce578e484b962a5aafd3c0ef9ee6908d6e5e6704b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied and Technical Physics</topic><topic>Brain</topic><topic>Characterization and Evaluation of Materials</topic><topic>Energy Materials</topic><topic>Fibroblasts</topic><topic>Genetic engineering</topic><topic>Materials Engineering</topic><topic>Materials News</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>News &amp; Analysis</topic><topic>Permeability</topic><topic>Researchers</topic><topic>Silicon nitride</topic><topic>Silicon wafers</topic><topic>Skin</topic><topic>Stem cells</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennington-Castro, Joseph</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennington-Castro, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio Focus: Small tissue reprogramming device designed to heal damaged tissues</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>42</volume><issue>10</issue><spage>695</spage><epage>696</epage><pages>695-696</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>Described recently in Nature Nanotechnology (doi:10.1038/NNANO.2017.134), TNT was used to reprogram skin cells in mice to become vascular (blood vessel) cells in badly injured legs that lacked blood flow, ultimately saving the legs within a short time. A decade ago, researchers from Japan and the United States showed that they could use gene-carrying viruses to transform adult skin cells into so-called induced pluripotent stem cells (iPS cells)--cells resembling embryonic stem cells that can then develop into other types of cells. When an intense, focused electric field is applied through the arrayed nanochannels, tissue cell membranes in contact with the device are benignly nanoporated (exposed to nanosecond electric pulses that reversibly increase membrane permeability) and reprogramming factors are electrophoretically driven into the cells.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2017.218</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2017-10, Vol.42 (10), p.695-696
issn 0883-7694
1938-1425
language eng
recordid cdi_proquest_journals_1948915524
source Springer Nature
subjects Applied and Technical Physics
Brain
Characterization and Evaluation of Materials
Energy Materials
Fibroblasts
Genetic engineering
Materials Engineering
Materials News
Materials Science
Nanotechnology
News & Analysis
Permeability
Researchers
Silicon nitride
Silicon wafers
Skin
Stem cells
Studies
title Bio Focus: Small tissue reprogramming device designed to heal damaged tissues
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio%20Focus:%20Small%20tissue%20reprogramming%20device%20designed%20to%20heal%20damaged%20tissues&rft.jtitle=MRS%20bulletin&rft.au=Bennington-Castro,%20Joseph&rft.date=2017-10-01&rft.volume=42&rft.issue=10&rft.spage=695&rft.epage=696&rft.pages=695-696&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs.2017.218&rft_dat=%3Cproquest_cross%3E1948915524%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-1ed33573b0dbea855f47fccce578e484b962a5aafd3c0ef9ee6908d6e5e6704b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1948915524&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2017_218&rfr_iscdi=true