Loading…
Bio Focus: Small tissue reprogramming device designed to heal damaged tissues
Described recently in Nature Nanotechnology (doi:10.1038/NNANO.2017.134), TNT was used to reprogram skin cells in mice to become vascular (blood vessel) cells in badly injured legs that lacked blood flow, ultimately saving the legs within a short time. A decade ago, researchers from Japan and the Un...
Saved in:
Published in: | MRS bulletin 2017-10, Vol.42 (10), p.695-696 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 696 |
container_issue | 10 |
container_start_page | 695 |
container_title | MRS bulletin |
container_volume | 42 |
creator | Bennington-Castro, Joseph |
description | Described recently in Nature Nanotechnology (doi:10.1038/NNANO.2017.134), TNT was used to reprogram skin cells in mice to become vascular (blood vessel) cells in badly injured legs that lacked blood flow, ultimately saving the legs within a short time. A decade ago, researchers from Japan and the United States showed that they could use gene-carrying viruses to transform adult skin cells into so-called induced pluripotent stem cells (iPS cells)--cells resembling embryonic stem cells that can then develop into other types of cells. When an intense, focused electric field is applied through the arrayed nanochannels, tissue cell membranes in contact with the device are benignly nanoporated (exposed to nanosecond electric pulses that reversibly increase membrane permeability) and reprogramming factors are electrophoretically driven into the cells. |
doi_str_mv | 10.1557/mrs.2017.218 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1948915524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2017_218</cupid><sourcerecordid>1948915524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-1ed33573b0dbea855f47fccce578e484b962a5aafd3c0ef9ee6908d6e5e6704b3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7e_AEBr7YmTdKk3nRxVVjxoJ5Dmkxrl36sSVfw35u6e_AgeBoGnved4UHonJKUCiGvOh_SjFCZZlQdoBktmEooz8QhmhGlWCLzgh-jkxDWhFBBpJihp9tmwMvBbsM1fulM2-KxCWEL2MPGD7U3Xdf0NXbw2ViIIzR1Dw6PA34H02JnOlNP-08onKKjyrQBzvZzjt6Wd6-Lh2T1fP-4uFklNsvFmFBwjAnJSuJKMEqIisvKWgtCKuCKl0WeGWFM5ZglUBUAeUGUy0FALgkv2Rxd7Hrjjx_x7qjXw9b38aSmBVdFtJHxSF3uKOuHEDxUeuObzvgvTYmehOkoTE_CdBQW8WSHh4j1NfhfpX_z6b7edKVvXA3_BL4Bg519Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948915524</pqid></control><display><type>article</type><title>Bio Focus: Small tissue reprogramming device designed to heal damaged tissues</title><source>Springer Nature</source><creator>Bennington-Castro, Joseph</creator><creatorcontrib>Bennington-Castro, Joseph</creatorcontrib><description>Described recently in Nature Nanotechnology (doi:10.1038/NNANO.2017.134), TNT was used to reprogram skin cells in mice to become vascular (blood vessel) cells in badly injured legs that lacked blood flow, ultimately saving the legs within a short time. A decade ago, researchers from Japan and the United States showed that they could use gene-carrying viruses to transform adult skin cells into so-called induced pluripotent stem cells (iPS cells)--cells resembling embryonic stem cells that can then develop into other types of cells. When an intense, focused electric field is applied through the arrayed nanochannels, tissue cell membranes in contact with the device are benignly nanoporated (exposed to nanosecond electric pulses that reversibly increase membrane permeability) and reprogramming factors are electrophoretically driven into the cells.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2017.218</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Brain ; Characterization and Evaluation of Materials ; Energy Materials ; Fibroblasts ; Genetic engineering ; Materials Engineering ; Materials News ; Materials Science ; Nanotechnology ; News & Analysis ; Permeability ; Researchers ; Silicon nitride ; Silicon wafers ; Skin ; Stem cells ; Studies</subject><ispartof>MRS bulletin, 2017-10, Vol.42 (10), p.695-696</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>Copyright © Materials Research Society 2017 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bennington-Castro, Joseph</creatorcontrib><title>Bio Focus: Small tissue reprogramming device designed to heal damaged tissues</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Described recently in Nature Nanotechnology (doi:10.1038/NNANO.2017.134), TNT was used to reprogram skin cells in mice to become vascular (blood vessel) cells in badly injured legs that lacked blood flow, ultimately saving the legs within a short time. A decade ago, researchers from Japan and the United States showed that they could use gene-carrying viruses to transform adult skin cells into so-called induced pluripotent stem cells (iPS cells)--cells resembling embryonic stem cells that can then develop into other types of cells. When an intense, focused electric field is applied through the arrayed nanochannels, tissue cell membranes in contact with the device are benignly nanoporated (exposed to nanosecond electric pulses that reversibly increase membrane permeability) and reprogramming factors are electrophoretically driven into the cells.</description><subject>Applied and Technical Physics</subject><subject>Brain</subject><subject>Characterization and Evaluation of Materials</subject><subject>Energy Materials</subject><subject>Fibroblasts</subject><subject>Genetic engineering</subject><subject>Materials Engineering</subject><subject>Materials News</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>News & Analysis</subject><subject>Permeability</subject><subject>Researchers</subject><subject>Silicon nitride</subject><subject>Silicon wafers</subject><subject>Skin</subject><subject>Stem cells</subject><subject>Studies</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7e_AEBr7YmTdKk3nRxVVjxoJ5Dmkxrl36sSVfw35u6e_AgeBoGnved4UHonJKUCiGvOh_SjFCZZlQdoBktmEooz8QhmhGlWCLzgh-jkxDWhFBBpJihp9tmwMvBbsM1fulM2-KxCWEL2MPGD7U3Xdf0NXbw2ViIIzR1Dw6PA34H02JnOlNP-08onKKjyrQBzvZzjt6Wd6-Lh2T1fP-4uFklNsvFmFBwjAnJSuJKMEqIisvKWgtCKuCKl0WeGWFM5ZglUBUAeUGUy0FALgkv2Rxd7Hrjjx_x7qjXw9b38aSmBVdFtJHxSF3uKOuHEDxUeuObzvgvTYmehOkoTE_CdBQW8WSHh4j1NfhfpX_z6b7edKVvXA3_BL4Bg519Zg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Bennington-Castro, Joseph</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20171001</creationdate><title>Bio Focus: Small tissue reprogramming device designed to heal damaged tissues</title><author>Bennington-Castro, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-1ed33573b0dbea855f47fccce578e484b962a5aafd3c0ef9ee6908d6e5e6704b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied and Technical Physics</topic><topic>Brain</topic><topic>Characterization and Evaluation of Materials</topic><topic>Energy Materials</topic><topic>Fibroblasts</topic><topic>Genetic engineering</topic><topic>Materials Engineering</topic><topic>Materials News</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>News & Analysis</topic><topic>Permeability</topic><topic>Researchers</topic><topic>Silicon nitride</topic><topic>Silicon wafers</topic><topic>Skin</topic><topic>Stem cells</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennington-Castro, Joseph</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennington-Castro, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio Focus: Small tissue reprogramming device designed to heal damaged tissues</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>42</volume><issue>10</issue><spage>695</spage><epage>696</epage><pages>695-696</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>Described recently in Nature Nanotechnology (doi:10.1038/NNANO.2017.134), TNT was used to reprogram skin cells in mice to become vascular (blood vessel) cells in badly injured legs that lacked blood flow, ultimately saving the legs within a short time. A decade ago, researchers from Japan and the United States showed that they could use gene-carrying viruses to transform adult skin cells into so-called induced pluripotent stem cells (iPS cells)--cells resembling embryonic stem cells that can then develop into other types of cells. When an intense, focused electric field is applied through the arrayed nanochannels, tissue cell membranes in contact with the device are benignly nanoporated (exposed to nanosecond electric pulses that reversibly increase membrane permeability) and reprogramming factors are electrophoretically driven into the cells.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2017.218</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7694 |
ispartof | MRS bulletin, 2017-10, Vol.42 (10), p.695-696 |
issn | 0883-7694 1938-1425 |
language | eng |
recordid | cdi_proquest_journals_1948915524 |
source | Springer Nature |
subjects | Applied and Technical Physics Brain Characterization and Evaluation of Materials Energy Materials Fibroblasts Genetic engineering Materials Engineering Materials News Materials Science Nanotechnology News & Analysis Permeability Researchers Silicon nitride Silicon wafers Skin Stem cells Studies |
title | Bio Focus: Small tissue reprogramming device designed to heal damaged tissues |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio%20Focus:%20Small%20tissue%20reprogramming%20device%20designed%20to%20heal%20damaged%20tissues&rft.jtitle=MRS%20bulletin&rft.au=Bennington-Castro,%20Joseph&rft.date=2017-10-01&rft.volume=42&rft.issue=10&rft.spage=695&rft.epage=696&rft.pages=695-696&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs.2017.218&rft_dat=%3Cproquest_cross%3E1948915524%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-1ed33573b0dbea855f47fccce578e484b962a5aafd3c0ef9ee6908d6e5e6704b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1948915524&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2017_218&rfr_iscdi=true |