Loading…
Representation theorems for transfinite computability and definability
We show how Kreisel's representation theorem for sets in the analytical hierarchy can be generalized to sets defined by positive induction and use this to estimate the complexity of constructions in the theory of domains with totality. [PUBLICATION ABSTRACT]
Saved in:
Published in: | Archive for mathematical logic 2002-11, Vol.41 (8), p.721-741 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 741 |
container_issue | 8 |
container_start_page | 721 |
container_title | Archive for mathematical logic |
container_volume | 41 |
creator | Normann, Dag |
description | We show how Kreisel's representation theorem for sets in the analytical hierarchy can be generalized to sets defined by positive induction and use this to estimate the complexity of constructions in the theory of domains with totality. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s001530200137 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194902171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>686936781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-56240282a723bf62ee27775f110a56923839eb6606e69c384493f75aafe98d5b3</originalsourceid><addsrcrecordid>eNpVkE1LxDAYhIMoWFeP3ov36puk-TrK4rrCgiB6Dmn7Brtsm5qkh_33VnYvngZmHmZgCLmn8EgB1FMCoIIDW4SrC1LQmrMKpBSXpADDeSV0La_JTUr7BWFa04JsPnCKmHDMLvdhLPM3hohDKn2IZY5uTL4f-4xlG4Zpzq7pD30-lm7syg6X6GzckivvDgnvzroiX5uXz_W22r2_vq2fd1XLhMmVkKwGpplTjDdeMkSmlBKeUnBCGsY1N9hICRKlabmua8O9Es55NLoTDV-Rh1PvFMPPjCnbfZjjuExaamoDjCq6QNUJamNIKaK3U-wHF4-Wgv17yv57iv8CgytaxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194902171</pqid></control><display><type>article</type><title>Representation theorems for transfinite computability and definability</title><source>Springer Nature</source><creator>Normann, Dag</creator><creatorcontrib>Normann, Dag</creatorcontrib><description>We show how Kreisel's representation theorem for sets in the analytical hierarchy can be generalized to sets defined by positive induction and use this to estimate the complexity of constructions in the theory of domains with totality. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0933-5846</identifier><identifier>EISSN: 1432-0665</identifier><identifier>DOI: 10.1007/s001530200137</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Logic ; Mathematics ; Set theory</subject><ispartof>Archive for mathematical logic, 2002-11, Vol.41 (8), p.721-741</ispartof><rights>Copyright Springer-Verlag 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Normann, Dag</creatorcontrib><title>Representation theorems for transfinite computability and definability</title><title>Archive for mathematical logic</title><description>We show how Kreisel's representation theorem for sets in the analytical hierarchy can be generalized to sets defined by positive induction and use this to estimate the complexity of constructions in the theory of domains with totality. [PUBLICATION ABSTRACT]</description><subject>Logic</subject><subject>Mathematics</subject><subject>Set theory</subject><issn>0933-5846</issn><issn>1432-0665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LxDAYhIMoWFeP3ov36puk-TrK4rrCgiB6Dmn7Brtsm5qkh_33VnYvngZmHmZgCLmn8EgB1FMCoIIDW4SrC1LQmrMKpBSXpADDeSV0La_JTUr7BWFa04JsPnCKmHDMLvdhLPM3hohDKn2IZY5uTL4f-4xlG4Zpzq7pD30-lm7syg6X6GzckivvDgnvzroiX5uXz_W22r2_vq2fd1XLhMmVkKwGpplTjDdeMkSmlBKeUnBCGsY1N9hICRKlabmua8O9Es55NLoTDV-Rh1PvFMPPjCnbfZjjuExaamoDjCq6QNUJamNIKaK3U-wHF4-Wgv17yv57iv8CgytaxA</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Normann, Dag</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20021101</creationdate><title>Representation theorems for transfinite computability and definability</title><author>Normann, Dag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-56240282a723bf62ee27775f110a56923839eb6606e69c384493f75aafe98d5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Logic</topic><topic>Mathematics</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Normann, Dag</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for mathematical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Normann, Dag</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation theorems for transfinite computability and definability</atitle><jtitle>Archive for mathematical logic</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>41</volume><issue>8</issue><spage>721</spage><epage>741</epage><pages>721-741</pages><issn>0933-5846</issn><eissn>1432-0665</eissn><abstract>We show how Kreisel's representation theorem for sets in the analytical hierarchy can be generalized to sets defined by positive induction and use this to estimate the complexity of constructions in the theory of domains with totality. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s001530200137</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-5846 |
ispartof | Archive for mathematical logic, 2002-11, Vol.41 (8), p.721-741 |
issn | 0933-5846 1432-0665 |
language | eng |
recordid | cdi_proquest_journals_194902171 |
source | Springer Nature |
subjects | Logic Mathematics Set theory |
title | Representation theorems for transfinite computability and definability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20theorems%20for%20transfinite%20computability%20and%20definability&rft.jtitle=Archive%20for%20mathematical%20logic&rft.au=Normann,%20Dag&rft.date=2002-11-01&rft.volume=41&rft.issue=8&rft.spage=721&rft.epage=741&rft.pages=721-741&rft.issn=0933-5846&rft.eissn=1432-0665&rft_id=info:doi/10.1007/s001530200137&rft_dat=%3Cproquest_cross%3E686936781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-56240282a723bf62ee27775f110a56923839eb6606e69c384493f75aafe98d5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194902171&rft_id=info:pmid/&rfr_iscdi=true |