Loading…

Representation theorems for transfinite computability and definability

We show how Kreisel's representation theorem for sets in the analytical hierarchy can be generalized to sets defined by positive induction and use this to estimate the complexity of constructions in the theory of domains with totality. [PUBLICATION ABSTRACT]

Saved in:
Bibliographic Details
Published in:Archive for mathematical logic 2002-11, Vol.41 (8), p.721-741
Main Author: Normann, Dag
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 741
container_issue 8
container_start_page 721
container_title Archive for mathematical logic
container_volume 41
creator Normann, Dag
description We show how Kreisel's representation theorem for sets in the analytical hierarchy can be generalized to sets defined by positive induction and use this to estimate the complexity of constructions in the theory of domains with totality. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s001530200137
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194902171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>686936781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-56240282a723bf62ee27775f110a56923839eb6606e69c384493f75aafe98d5b3</originalsourceid><addsrcrecordid>eNpVkE1LxDAYhIMoWFeP3ov36puk-TrK4rrCgiB6Dmn7Brtsm5qkh_33VnYvngZmHmZgCLmn8EgB1FMCoIIDW4SrC1LQmrMKpBSXpADDeSV0La_JTUr7BWFa04JsPnCKmHDMLvdhLPM3hohDKn2IZY5uTL4f-4xlG4Zpzq7pD30-lm7syg6X6GzckivvDgnvzroiX5uXz_W22r2_vq2fd1XLhMmVkKwGpplTjDdeMkSmlBKeUnBCGsY1N9hICRKlabmua8O9Es55NLoTDV-Rh1PvFMPPjCnbfZjjuExaamoDjCq6QNUJamNIKaK3U-wHF4-Wgv17yv57iv8CgytaxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194902171</pqid></control><display><type>article</type><title>Representation theorems for transfinite computability and definability</title><source>Springer Nature</source><creator>Normann, Dag</creator><creatorcontrib>Normann, Dag</creatorcontrib><description>We show how Kreisel's representation theorem for sets in the analytical hierarchy can be generalized to sets defined by positive induction and use this to estimate the complexity of constructions in the theory of domains with totality. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0933-5846</identifier><identifier>EISSN: 1432-0665</identifier><identifier>DOI: 10.1007/s001530200137</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Logic ; Mathematics ; Set theory</subject><ispartof>Archive for mathematical logic, 2002-11, Vol.41 (8), p.721-741</ispartof><rights>Copyright Springer-Verlag 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Normann, Dag</creatorcontrib><title>Representation theorems for transfinite computability and definability</title><title>Archive for mathematical logic</title><description>We show how Kreisel's representation theorem for sets in the analytical hierarchy can be generalized to sets defined by positive induction and use this to estimate the complexity of constructions in the theory of domains with totality. [PUBLICATION ABSTRACT]</description><subject>Logic</subject><subject>Mathematics</subject><subject>Set theory</subject><issn>0933-5846</issn><issn>1432-0665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LxDAYhIMoWFeP3ov36puk-TrK4rrCgiB6Dmn7Brtsm5qkh_33VnYvngZmHmZgCLmn8EgB1FMCoIIDW4SrC1LQmrMKpBSXpADDeSV0La_JTUr7BWFa04JsPnCKmHDMLvdhLPM3hohDKn2IZY5uTL4f-4xlG4Zpzq7pD30-lm7syg6X6GzckivvDgnvzroiX5uXz_W22r2_vq2fd1XLhMmVkKwGpplTjDdeMkSmlBKeUnBCGsY1N9hICRKlabmua8O9Es55NLoTDV-Rh1PvFMPPjCnbfZjjuExaamoDjCq6QNUJamNIKaK3U-wHF4-Wgv17yv57iv8CgytaxA</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Normann, Dag</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20021101</creationdate><title>Representation theorems for transfinite computability and definability</title><author>Normann, Dag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-56240282a723bf62ee27775f110a56923839eb6606e69c384493f75aafe98d5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Logic</topic><topic>Mathematics</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Normann, Dag</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for mathematical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Normann, Dag</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation theorems for transfinite computability and definability</atitle><jtitle>Archive for mathematical logic</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>41</volume><issue>8</issue><spage>721</spage><epage>741</epage><pages>721-741</pages><issn>0933-5846</issn><eissn>1432-0665</eissn><abstract>We show how Kreisel's representation theorem for sets in the analytical hierarchy can be generalized to sets defined by positive induction and use this to estimate the complexity of constructions in the theory of domains with totality. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s001530200137</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0933-5846
ispartof Archive for mathematical logic, 2002-11, Vol.41 (8), p.721-741
issn 0933-5846
1432-0665
language eng
recordid cdi_proquest_journals_194902171
source Springer Nature
subjects Logic
Mathematics
Set theory
title Representation theorems for transfinite computability and definability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20theorems%20for%20transfinite%20computability%20and%20definability&rft.jtitle=Archive%20for%20mathematical%20logic&rft.au=Normann,%20Dag&rft.date=2002-11-01&rft.volume=41&rft.issue=8&rft.spage=721&rft.epage=741&rft.pages=721-741&rft.issn=0933-5846&rft.eissn=1432-0665&rft_id=info:doi/10.1007/s001530200137&rft_dat=%3Cproquest_cross%3E686936781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-56240282a723bf62ee27775f110a56923839eb6606e69c384493f75aafe98d5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194902171&rft_id=info:pmid/&rfr_iscdi=true