Loading…
Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System
In this paper, the extended Jaynes-Cummings-Dicke (JC-Dicke) model which describes a two-level atomic Bose-Einstein condensate (BEC) dispersive coupled to a high-finesse optical cavity is considered. The theoretical description of an effective Hamiltonian for BEC is introduced. The potential energy...
Saved in:
Published in: | International journal of theoretical physics 2017-11, Vol.56 (11), p.3655-3666 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3 |
container_end_page | 3666 |
container_issue | 11 |
container_start_page | 3655 |
container_title | International journal of theoretical physics |
container_volume | 56 |
creator | Abdel-Rady, A. S. Hassan, Samia S. A. Osman, Abdel-Nasser A. Salah, Ahmed |
description | In this paper, the extended Jaynes-Cummings-Dicke (JC-Dicke) model which describes a two-level atomic Bose-Einstein condensate (BEC) dispersive coupled to a high-finesse optical cavity is considered. The theoretical description of an effective Hamiltonian for BEC is introduced. The potential energy surface of the system is obtained from the direct product Heisenberg-Weyl (HW1) coherent states for the field and U(2) coherent states for the matter. Also, the variational energy is evaluated as the expectation value of the Hamiltonian for this state in the framework of mean-field approach. The quantum phase transitions (QPTs) and the Berry phase for this model are investigated numerically. We observed that the atom-atom interactions can strongly affect the quantum phase transition point. Furthermore, we noticed that the coherent atoms not only shift the phase transition point but also affect the macroscopic excitations in the superradiant phase. Moreover, it is found that the new phase transition occurs when the microwave amplitude changes. Some of the numerical results in this paper are agreement precisely with the results of our paper which has published in Int. J. Mod. Phys. B when we studied the same model using a different coherent state. |
doi_str_mv | 10.1007/s10773-017-3531-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949145774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949145774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEuXxAewssTbMxEkdLyGUl5AAUdaW6zhgaO0SO0D_HkNZsGE1mtG5d6RDyAHCEQKI44ggBGeAgvGKI-MbZISVKJisRLVJRgAFMCHKepvsxPgCABLKekQ-J-9hPiQXPA0dnXwm61vb0uuGnTnzaun9oH0aFvTuWUdLp7320f3QHy49U02bMCznOXC7TM7oOW30u0sr6jw9DdGyifMx2bw1Iff6qJOlD6t8WuyRrU7Po93_nbvk8XwybS7Zze3FVXNywwzHcWKzFsbGCFuiLbuukFUhW4mS1x0XWGhAsIimkCBwNq4N1EXFoWqxFGaM3HZ8lxyue5d9eBtsTOolDL3PLxXKUmJZZSuZwjVl-hBjbzu17N1C9yuFoL4Fq7VglQWrb8GK50yxzsTM-ifb_2n-N_QFQHF9UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949145774</pqid></control><display><type>article</type><title>Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System</title><source>Springer Nature</source><creator>Abdel-Rady, A. S. ; Hassan, Samia S. A. ; Osman, Abdel-Nasser A. ; Salah, Ahmed</creator><creatorcontrib>Abdel-Rady, A. S. ; Hassan, Samia S. A. ; Osman, Abdel-Nasser A. ; Salah, Ahmed</creatorcontrib><description>In this paper, the extended Jaynes-Cummings-Dicke (JC-Dicke) model which describes a two-level atomic Bose-Einstein condensate (BEC) dispersive coupled to a high-finesse optical cavity is considered. The theoretical description of an effective Hamiltonian for BEC is introduced. The potential energy surface of the system is obtained from the direct product Heisenberg-Weyl (HW1) coherent states for the field and U(2) coherent states for the matter. Also, the variational energy is evaluated as the expectation value of the Hamiltonian for this state in the framework of mean-field approach. The quantum phase transitions (QPTs) and the Berry phase for this model are investigated numerically. We observed that the atom-atom interactions can strongly affect the quantum phase transition point. Furthermore, we noticed that the coherent atoms not only shift the phase transition point but also affect the macroscopic excitations in the superradiant phase. Moreover, it is found that the new phase transition occurs when the microwave amplitude changes. Some of the numerical results in this paper are agreement precisely with the results of our paper which has published in Int. J. Mod. Phys. B when we studied the same model using a different coherent state.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-017-3531-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bose-Einstein condensates ; Coherence ; Condensates ; Elementary Particles ; Mathematical and Computational Physics ; Mathematical models ; Phase transitions ; Physics ; Physics and Astronomy ; Potential energy ; Quantum Field Theory ; Quantum mechanics ; Quantum Physics ; Theoretical</subject><ispartof>International journal of theoretical physics, 2017-11, Vol.56 (11), p.3655-3666</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3</citedby><cites>FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abdel-Rady, A. S.</creatorcontrib><creatorcontrib>Hassan, Samia S. A.</creatorcontrib><creatorcontrib>Osman, Abdel-Nasser A.</creatorcontrib><creatorcontrib>Salah, Ahmed</creatorcontrib><title>Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>In this paper, the extended Jaynes-Cummings-Dicke (JC-Dicke) model which describes a two-level atomic Bose-Einstein condensate (BEC) dispersive coupled to a high-finesse optical cavity is considered. The theoretical description of an effective Hamiltonian for BEC is introduced. The potential energy surface of the system is obtained from the direct product Heisenberg-Weyl (HW1) coherent states for the field and U(2) coherent states for the matter. Also, the variational energy is evaluated as the expectation value of the Hamiltonian for this state in the framework of mean-field approach. The quantum phase transitions (QPTs) and the Berry phase for this model are investigated numerically. We observed that the atom-atom interactions can strongly affect the quantum phase transition point. Furthermore, we noticed that the coherent atoms not only shift the phase transition point but also affect the macroscopic excitations in the superradiant phase. Moreover, it is found that the new phase transition occurs when the microwave amplitude changes. Some of the numerical results in this paper are agreement precisely with the results of our paper which has published in Int. J. Mod. Phys. B when we studied the same model using a different coherent state.</description><subject>Bose-Einstein condensates</subject><subject>Coherence</subject><subject>Condensates</subject><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potential energy</subject><subject>Quantum Field Theory</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEuXxAewssTbMxEkdLyGUl5AAUdaW6zhgaO0SO0D_HkNZsGE1mtG5d6RDyAHCEQKI44ggBGeAgvGKI-MbZISVKJisRLVJRgAFMCHKepvsxPgCABLKekQ-J-9hPiQXPA0dnXwm61vb0uuGnTnzaun9oH0aFvTuWUdLp7320f3QHy49U02bMCznOXC7TM7oOW30u0sr6jw9DdGyifMx2bw1Iff6qJOlD6t8WuyRrU7Po93_nbvk8XwybS7Zze3FVXNywwzHcWKzFsbGCFuiLbuukFUhW4mS1x0XWGhAsIimkCBwNq4N1EXFoWqxFGaM3HZ8lxyue5d9eBtsTOolDL3PLxXKUmJZZSuZwjVl-hBjbzu17N1C9yuFoL4Fq7VglQWrb8GK50yxzsTM-ifb_2n-N_QFQHF9UA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Abdel-Rady, A. S.</creator><creator>Hassan, Samia S. A.</creator><creator>Osman, Abdel-Nasser A.</creator><creator>Salah, Ahmed</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171101</creationdate><title>Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System</title><author>Abdel-Rady, A. S. ; Hassan, Samia S. A. ; Osman, Abdel-Nasser A. ; Salah, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bose-Einstein condensates</topic><topic>Coherence</topic><topic>Condensates</topic><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potential energy</topic><topic>Quantum Field Theory</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel-Rady, A. S.</creatorcontrib><creatorcontrib>Hassan, Samia S. A.</creatorcontrib><creatorcontrib>Osman, Abdel-Nasser A.</creatorcontrib><creatorcontrib>Salah, Ahmed</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel-Rady, A. S.</au><au>Hassan, Samia S. A.</au><au>Osman, Abdel-Nasser A.</au><au>Salah, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>56</volume><issue>11</issue><spage>3655</spage><epage>3666</epage><pages>3655-3666</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>In this paper, the extended Jaynes-Cummings-Dicke (JC-Dicke) model which describes a two-level atomic Bose-Einstein condensate (BEC) dispersive coupled to a high-finesse optical cavity is considered. The theoretical description of an effective Hamiltonian for BEC is introduced. The potential energy surface of the system is obtained from the direct product Heisenberg-Weyl (HW1) coherent states for the field and U(2) coherent states for the matter. Also, the variational energy is evaluated as the expectation value of the Hamiltonian for this state in the framework of mean-field approach. The quantum phase transitions (QPTs) and the Berry phase for this model are investigated numerically. We observed that the atom-atom interactions can strongly affect the quantum phase transition point. Furthermore, we noticed that the coherent atoms not only shift the phase transition point but also affect the macroscopic excitations in the superradiant phase. Moreover, it is found that the new phase transition occurs when the microwave amplitude changes. Some of the numerical results in this paper are agreement precisely with the results of our paper which has published in Int. J. Mod. Phys. B when we studied the same model using a different coherent state.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-017-3531-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7748 |
ispartof | International journal of theoretical physics, 2017-11, Vol.56 (11), p.3655-3666 |
issn | 0020-7748 1572-9575 |
language | eng |
recordid | cdi_proquest_journals_1949145774 |
source | Springer Nature |
subjects | Bose-Einstein condensates Coherence Condensates Elementary Particles Mathematical and Computational Physics Mathematical models Phase transitions Physics Physics and Astronomy Potential energy Quantum Field Theory Quantum mechanics Quantum Physics Theoretical |
title | Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Extended%20JC-Dicke%20Quantum%20Phase%20Transition%20with%20a%20Coupled%20Optical%20Cavity%20in%20Bose-Einstein%20Condensate%20System&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Abdel-Rady,%20A.%20S.&rft.date=2017-11-01&rft.volume=56&rft.issue=11&rft.spage=3655&rft.epage=3666&rft.pages=3655-3666&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-017-3531-3&rft_dat=%3Cproquest_cross%3E1949145774%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1949145774&rft_id=info:pmid/&rfr_iscdi=true |