Loading…

Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System

In this paper, the extended Jaynes-Cummings-Dicke (JC-Dicke) model which describes a two-level atomic Bose-Einstein condensate (BEC) dispersive coupled to a high-finesse optical cavity is considered. The theoretical description of an effective Hamiltonian for BEC is introduced. The potential energy...

Full description

Saved in:
Bibliographic Details
Published in:International journal of theoretical physics 2017-11, Vol.56 (11), p.3655-3666
Main Authors: Abdel-Rady, A. S., Hassan, Samia S. A., Osman, Abdel-Nasser A., Salah, Ahmed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3
cites cdi_FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3
container_end_page 3666
container_issue 11
container_start_page 3655
container_title International journal of theoretical physics
container_volume 56
creator Abdel-Rady, A. S.
Hassan, Samia S. A.
Osman, Abdel-Nasser A.
Salah, Ahmed
description In this paper, the extended Jaynes-Cummings-Dicke (JC-Dicke) model which describes a two-level atomic Bose-Einstein condensate (BEC) dispersive coupled to a high-finesse optical cavity is considered. The theoretical description of an effective Hamiltonian for BEC is introduced. The potential energy surface of the system is obtained from the direct product Heisenberg-Weyl (HW1) coherent states for the field and U(2) coherent states for the matter. Also, the variational energy is evaluated as the expectation value of the Hamiltonian for this state in the framework of mean-field approach. The quantum phase transitions (QPTs) and the Berry phase for this model are investigated numerically. We observed that the atom-atom interactions can strongly affect the quantum phase transition point. Furthermore, we noticed that the coherent atoms not only shift the phase transition point but also affect the macroscopic excitations in the superradiant phase. Moreover, it is found that the new phase transition occurs when the microwave amplitude changes. Some of the numerical results in this paper are agreement precisely with the results of our paper which has published in Int. J. Mod. Phys. B when we studied the same model using a different coherent state.
doi_str_mv 10.1007/s10773-017-3531-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949145774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949145774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEuXxAewssTbMxEkdLyGUl5AAUdaW6zhgaO0SO0D_HkNZsGE1mtG5d6RDyAHCEQKI44ggBGeAgvGKI-MbZISVKJisRLVJRgAFMCHKepvsxPgCABLKekQ-J-9hPiQXPA0dnXwm61vb0uuGnTnzaun9oH0aFvTuWUdLp7320f3QHy49U02bMCznOXC7TM7oOW30u0sr6jw9DdGyifMx2bw1Iff6qJOlD6t8WuyRrU7Po93_nbvk8XwybS7Zze3FVXNywwzHcWKzFsbGCFuiLbuukFUhW4mS1x0XWGhAsIimkCBwNq4N1EXFoWqxFGaM3HZ8lxyue5d9eBtsTOolDL3PLxXKUmJZZSuZwjVl-hBjbzu17N1C9yuFoL4Fq7VglQWrb8GK50yxzsTM-ifb_2n-N_QFQHF9UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949145774</pqid></control><display><type>article</type><title>Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System</title><source>Springer Nature</source><creator>Abdel-Rady, A. S. ; Hassan, Samia S. A. ; Osman, Abdel-Nasser A. ; Salah, Ahmed</creator><creatorcontrib>Abdel-Rady, A. S. ; Hassan, Samia S. A. ; Osman, Abdel-Nasser A. ; Salah, Ahmed</creatorcontrib><description>In this paper, the extended Jaynes-Cummings-Dicke (JC-Dicke) model which describes a two-level atomic Bose-Einstein condensate (BEC) dispersive coupled to a high-finesse optical cavity is considered. The theoretical description of an effective Hamiltonian for BEC is introduced. The potential energy surface of the system is obtained from the direct product Heisenberg-Weyl (HW1) coherent states for the field and U(2) coherent states for the matter. Also, the variational energy is evaluated as the expectation value of the Hamiltonian for this state in the framework of mean-field approach. The quantum phase transitions (QPTs) and the Berry phase for this model are investigated numerically. We observed that the atom-atom interactions can strongly affect the quantum phase transition point. Furthermore, we noticed that the coherent atoms not only shift the phase transition point but also affect the macroscopic excitations in the superradiant phase. Moreover, it is found that the new phase transition occurs when the microwave amplitude changes. Some of the numerical results in this paper are agreement precisely with the results of our paper which has published in Int. J. Mod. Phys. B when we studied the same model using a different coherent state.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-017-3531-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bose-Einstein condensates ; Coherence ; Condensates ; Elementary Particles ; Mathematical and Computational Physics ; Mathematical models ; Phase transitions ; Physics ; Physics and Astronomy ; Potential energy ; Quantum Field Theory ; Quantum mechanics ; Quantum Physics ; Theoretical</subject><ispartof>International journal of theoretical physics, 2017-11, Vol.56 (11), p.3655-3666</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3</citedby><cites>FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abdel-Rady, A. S.</creatorcontrib><creatorcontrib>Hassan, Samia S. A.</creatorcontrib><creatorcontrib>Osman, Abdel-Nasser A.</creatorcontrib><creatorcontrib>Salah, Ahmed</creatorcontrib><title>Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>In this paper, the extended Jaynes-Cummings-Dicke (JC-Dicke) model which describes a two-level atomic Bose-Einstein condensate (BEC) dispersive coupled to a high-finesse optical cavity is considered. The theoretical description of an effective Hamiltonian for BEC is introduced. The potential energy surface of the system is obtained from the direct product Heisenberg-Weyl (HW1) coherent states for the field and U(2) coherent states for the matter. Also, the variational energy is evaluated as the expectation value of the Hamiltonian for this state in the framework of mean-field approach. The quantum phase transitions (QPTs) and the Berry phase for this model are investigated numerically. We observed that the atom-atom interactions can strongly affect the quantum phase transition point. Furthermore, we noticed that the coherent atoms not only shift the phase transition point but also affect the macroscopic excitations in the superradiant phase. Moreover, it is found that the new phase transition occurs when the microwave amplitude changes. Some of the numerical results in this paper are agreement precisely with the results of our paper which has published in Int. J. Mod. Phys. B when we studied the same model using a different coherent state.</description><subject>Bose-Einstein condensates</subject><subject>Coherence</subject><subject>Condensates</subject><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potential energy</subject><subject>Quantum Field Theory</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEuXxAewssTbMxEkdLyGUl5AAUdaW6zhgaO0SO0D_HkNZsGE1mtG5d6RDyAHCEQKI44ggBGeAgvGKI-MbZISVKJisRLVJRgAFMCHKepvsxPgCABLKekQ-J-9hPiQXPA0dnXwm61vb0uuGnTnzaun9oH0aFvTuWUdLp7320f3QHy49U02bMCznOXC7TM7oOW30u0sr6jw9DdGyifMx2bw1Iff6qJOlD6t8WuyRrU7Po93_nbvk8XwybS7Zze3FVXNywwzHcWKzFsbGCFuiLbuukFUhW4mS1x0XWGhAsIimkCBwNq4N1EXFoWqxFGaM3HZ8lxyue5d9eBtsTOolDL3PLxXKUmJZZSuZwjVl-hBjbzu17N1C9yuFoL4Fq7VglQWrb8GK50yxzsTM-ifb_2n-N_QFQHF9UA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Abdel-Rady, A. S.</creator><creator>Hassan, Samia S. A.</creator><creator>Osman, Abdel-Nasser A.</creator><creator>Salah, Ahmed</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171101</creationdate><title>Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System</title><author>Abdel-Rady, A. S. ; Hassan, Samia S. A. ; Osman, Abdel-Nasser A. ; Salah, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bose-Einstein condensates</topic><topic>Coherence</topic><topic>Condensates</topic><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potential energy</topic><topic>Quantum Field Theory</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel-Rady, A. S.</creatorcontrib><creatorcontrib>Hassan, Samia S. A.</creatorcontrib><creatorcontrib>Osman, Abdel-Nasser A.</creatorcontrib><creatorcontrib>Salah, Ahmed</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel-Rady, A. S.</au><au>Hassan, Samia S. A.</au><au>Osman, Abdel-Nasser A.</au><au>Salah, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>56</volume><issue>11</issue><spage>3655</spage><epage>3666</epage><pages>3655-3666</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>In this paper, the extended Jaynes-Cummings-Dicke (JC-Dicke) model which describes a two-level atomic Bose-Einstein condensate (BEC) dispersive coupled to a high-finesse optical cavity is considered. The theoretical description of an effective Hamiltonian for BEC is introduced. The potential energy surface of the system is obtained from the direct product Heisenberg-Weyl (HW1) coherent states for the field and U(2) coherent states for the matter. Also, the variational energy is evaluated as the expectation value of the Hamiltonian for this state in the framework of mean-field approach. The quantum phase transitions (QPTs) and the Berry phase for this model are investigated numerically. We observed that the atom-atom interactions can strongly affect the quantum phase transition point. Furthermore, we noticed that the coherent atoms not only shift the phase transition point but also affect the macroscopic excitations in the superradiant phase. Moreover, it is found that the new phase transition occurs when the microwave amplitude changes. Some of the numerical results in this paper are agreement precisely with the results of our paper which has published in Int. J. Mod. Phys. B when we studied the same model using a different coherent state.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-017-3531-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof International journal of theoretical physics, 2017-11, Vol.56 (11), p.3655-3666
issn 0020-7748
1572-9575
language eng
recordid cdi_proquest_journals_1949145774
source Springer Nature
subjects Bose-Einstein condensates
Coherence
Condensates
Elementary Particles
Mathematical and Computational Physics
Mathematical models
Phase transitions
Physics
Physics and Astronomy
Potential energy
Quantum Field Theory
Quantum mechanics
Quantum Physics
Theoretical
title Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Extended%20JC-Dicke%20Quantum%20Phase%20Transition%20with%20a%20Coupled%20Optical%20Cavity%20in%20Bose-Einstein%20Condensate%20System&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Abdel-Rady,%20A.%20S.&rft.date=2017-11-01&rft.volume=56&rft.issue=11&rft.spage=3655&rft.epage=3666&rft.pages=3655-3666&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-017-3531-3&rft_dat=%3Cproquest_cross%3E1949145774%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-bd06cc7e41e4ff29529d91938f3712a010e11c29071b68c0825305d147c613ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1949145774&rft_id=info:pmid/&rfr_iscdi=true