Loading…

A novel delay partitioning method for stability analysis of interval time-varying delay systems

This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h2−h1∈[0,h2] has been selected. Based on this delay partitioning point, a new augmented Lya...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Franklin Institute 2017-01, Vol.354 (2), p.1209-1219
Main Authors: Ding, Liming, He, Yong, Wu, Min, Zhang, Zhiming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-b600ca0c24ec62ea95579cd286593a003ceef20e99d5ba102248da929cea8ad43
cites cdi_FETCH-LOGICAL-c343t-b600ca0c24ec62ea95579cd286593a003ceef20e99d5ba102248da929cea8ad43
container_end_page 1219
container_issue 2
container_start_page 1209
container_title Journal of the Franklin Institute
container_volume 354
creator Ding, Liming
He, Yong
Wu, Min
Zhang, Zhiming
description This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h2−h1∈[0,h2] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones.
doi_str_mv 10.1016/j.jfranklin.2016.11.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949668185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003216304410</els_id><sourcerecordid>1949668185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b600ca0c24ec62ea95579cd286593a003ceef20e99d5ba102248da929cea8ad43</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI3YIlzgu08fawqXlIlLnC2XHsDDoldbDdS_h5XQVw5rfYxszOD0C0lOSW0vu_zvvPSfg3G5iwNckpzwtgZWtG24RmreXGOViRtMkIKdomuQuhT21BCVkhssHUTDFjDIGd8kD6aaJw19gOPED-dxp3zOES5N4OJM5ZWDnMwAbsOGxvBT3LA0YyQTdLPJ9jCFOYQYQzX6KKTQ4Cb37pG748Pb9vnbPf69LLd7DJVlEXM9jUhShLFSlA1A8mrquFKs7aueCGTbgXQMQKc62ovafJXtlpyxhXIVuqyWKO7hffg3fcRQhS9O_qkNQjKS17XLW2rdNUsV8q7EDx04uDNmHQLSsQpTdGLvzTFKU1BqUjfEnKzICGZmAx4EZQBq0AbDyoK7cy_HD_QuIQL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949668185</pqid></control><display><type>article</type><title>A novel delay partitioning method for stability analysis of interval time-varying delay systems</title><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Ding, Liming ; He, Yong ; Wu, Min ; Zhang, Zhiming</creator><creatorcontrib>Ding, Liming ; He, Yong ; Wu, Min ; Zhang, Zhiming</creatorcontrib><description>This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h2−h1∈[0,h2] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2016.11.022</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Delay ; Derivatives ; Integrals ; Integrated approach ; Matrix ; Numerical analysis ; Partitioning ; Stability analysis ; Stabilization</subject><ispartof>Journal of the Franklin Institute, 2017-01, Vol.354 (2), p.1209-1219</ispartof><rights>2016 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Jan 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b600ca0c24ec62ea95579cd286593a003ceef20e99d5ba102248da929cea8ad43</citedby><cites>FETCH-LOGICAL-c343t-b600ca0c24ec62ea95579cd286593a003ceef20e99d5ba102248da929cea8ad43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016003216304410$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3550,27903,27904,45981</link.rule.ids></links><search><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Zhang, Zhiming</creatorcontrib><title>A novel delay partitioning method for stability analysis of interval time-varying delay systems</title><title>Journal of the Franklin Institute</title><description>This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h2−h1∈[0,h2] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones.</description><subject>Delay</subject><subject>Derivatives</subject><subject>Integrals</subject><subject>Integrated approach</subject><subject>Matrix</subject><subject>Numerical analysis</subject><subject>Partitioning</subject><subject>Stability analysis</subject><subject>Stabilization</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI3YIlzgu08fawqXlIlLnC2XHsDDoldbDdS_h5XQVw5rfYxszOD0C0lOSW0vu_zvvPSfg3G5iwNckpzwtgZWtG24RmreXGOViRtMkIKdomuQuhT21BCVkhssHUTDFjDIGd8kD6aaJw19gOPED-dxp3zOES5N4OJM5ZWDnMwAbsOGxvBT3LA0YyQTdLPJ9jCFOYQYQzX6KKTQ4Cb37pG748Pb9vnbPf69LLd7DJVlEXM9jUhShLFSlA1A8mrquFKs7aueCGTbgXQMQKc62ovafJXtlpyxhXIVuqyWKO7hffg3fcRQhS9O_qkNQjKS17XLW2rdNUsV8q7EDx04uDNmHQLSsQpTdGLvzTFKU1BqUjfEnKzICGZmAx4EZQBq0AbDyoK7cy_HD_QuIQL</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Ding, Liming</creator><creator>He, Yong</creator><creator>Wu, Min</creator><creator>Zhang, Zhiming</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201701</creationdate><title>A novel delay partitioning method for stability analysis of interval time-varying delay systems</title><author>Ding, Liming ; He, Yong ; Wu, Min ; Zhang, Zhiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b600ca0c24ec62ea95579cd286593a003ceef20e99d5ba102248da929cea8ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Delay</topic><topic>Derivatives</topic><topic>Integrals</topic><topic>Integrated approach</topic><topic>Matrix</topic><topic>Numerical analysis</topic><topic>Partitioning</topic><topic>Stability analysis</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Zhang, Zhiming</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Liming</au><au>He, Yong</au><au>Wu, Min</au><au>Zhang, Zhiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel delay partitioning method for stability analysis of interval time-varying delay systems</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2017-01</date><risdate>2017</risdate><volume>354</volume><issue>2</issue><spage>1209</spage><epage>1219</epage><pages>1209-1219</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>This paper investigates the problem of the delay-dependent stability for systems with interval time-varying delays. By using the idea of delay-partitioning approach, an appropriate delay partitioning point of h2−h1∈[0,h2] has been selected. Based on this delay partitioning point, a new augmented Lyapunov–Krasovskii functional is constructed. Then, the free-matrix-based integral inequality is employed to estimate the derivative of Lyapunov–Krasovskii functional. As a result, less conservative criteria are presented. Numerical examples are given to illustrate the improvement of the presented approach over the existing ones.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2016.11.022</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2017-01, Vol.354 (2), p.1209-1219
issn 0016-0032
1879-2693
0016-0032
language eng
recordid cdi_proquest_journals_1949668185
source ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]
subjects Delay
Derivatives
Integrals
Integrated approach
Matrix
Numerical analysis
Partitioning
Stability analysis
Stabilization
title A novel delay partitioning method for stability analysis of interval time-varying delay systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20delay%20partitioning%20method%20for%20stability%20analysis%20of%20interval%20time-varying%20delay%20systems&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Ding,%20Liming&rft.date=2017-01&rft.volume=354&rft.issue=2&rft.spage=1209&rft.epage=1219&rft.pages=1209-1219&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2016.11.022&rft_dat=%3Cproquest_cross%3E1949668185%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-b600ca0c24ec62ea95579cd286593a003ceef20e99d5ba102248da929cea8ad43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1949668185&rft_id=info:pmid/&rfr_iscdi=true