Loading…

Numerical simulation of metal transfer in pulsed-MIG welding

Pulsed currents of various shapes have been employed to control the metal transfer phenomena. In the present study, a simulation model including both the arc plasma and the metal transfer is constructed, and their behaviors in pulsed-MIG arc welding are numerically investigated. When the peak curren...

Full description

Saved in:
Bibliographic Details
Published in:Welding in the world 2017-11, Vol.61 (6), p.1289-1296
Main Authors: Ogino, Y., Hirata, Y., Asai, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3
cites cdi_FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3
container_end_page 1296
container_issue 6
container_start_page 1289
container_title Welding in the world
container_volume 61
creator Ogino, Y.
Hirata, Y.
Asai, S.
description Pulsed currents of various shapes have been employed to control the metal transfer phenomena. In the present study, a simulation model including both the arc plasma and the metal transfer is constructed, and their behaviors in pulsed-MIG arc welding are numerically investigated. When the peak current is set to 450 A and the peak time is set to 1.5 ms, only a single droplet is transferred per pulse. The numerical model can indicate the metal transfer and arc plasma behavior depending on the pulse shape. The temperature of the arc plasma increases rapidly at the early phase of the peak time, and consequently, the temperature of the wire electrode increases. After that, a large amount of the metal vapor generates from the wire tip, and the arc temperature decreases. These behaviors are periodic and can be controlled through the pulse shape. In addition, the appropriate pulse frequency depends on the surface tension of the wire electrode. This result shows that balance of the surface tension and the electromagnetic force is important to determine the droplet behavior. Therefore, in controlling the welding process, it is important to consider the properties of both the welding power source and the welding material.
doi_str_mv 10.1007/s40194-017-0492-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1950654314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950654314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbV9sLbmTQcWDUja5DkqZDhz7GpEX892aoCzcuLgcO55wLHyHXDG4ZQHEXJTCUFFhBQSKn4oQsWFmUNM9zPCULACko52V5Ti5i3AMApluQ-9ep86Fxps1i002tGZuhz4Y66_yYvDGYPtY-ZE2fHaY2-oq-bNbZl2-rpt9dkrPaJPPqV5fk4-nxffVMt2_rzephS50o-Ug9WKmcxdqWileIzjGuLHDnK6MqNIDSCsPQWoOltVZyBJ4XNnfoFHe1WJKbefcQhs_Jx1Hvhyn06aVmqCBXUjCZUmxOuTDEGHytD6HpTPjWDPQRkp4h6QRJHyFpkTp87sSU7Xc-_Fn-t_QDMtZplg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950654314</pqid></control><display><type>article</type><title>Numerical simulation of metal transfer in pulsed-MIG welding</title><source>Springer Link</source><creator>Ogino, Y. ; Hirata, Y. ; Asai, S.</creator><creatorcontrib>Ogino, Y. ; Hirata, Y. ; Asai, S.</creatorcontrib><description>Pulsed currents of various shapes have been employed to control the metal transfer phenomena. In the present study, a simulation model including both the arc plasma and the metal transfer is constructed, and their behaviors in pulsed-MIG arc welding are numerically investigated. When the peak current is set to 450 A and the peak time is set to 1.5 ms, only a single droplet is transferred per pulse. The numerical model can indicate the metal transfer and arc plasma behavior depending on the pulse shape. The temperature of the arc plasma increases rapidly at the early phase of the peak time, and consequently, the temperature of the wire electrode increases. After that, a large amount of the metal vapor generates from the wire tip, and the arc temperature decreases. These behaviors are periodic and can be controlled through the pulse shape. In addition, the appropriate pulse frequency depends on the surface tension of the wire electrode. This result shows that balance of the surface tension and the electromagnetic force is important to determine the droplet behavior. Therefore, in controlling the welding process, it is important to consider the properties of both the welding power source and the welding material.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-017-0492-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Behavior ; Chemistry and Materials Science ; Computer simulation ; Electrodes ; Gas metal arc welding ; Materials Science ; Mathematical models ; Metallic Materials ; MIG welding ; Plasma ; Plasma arc welding ; Plasmas (physics) ; Pulse shape ; Research Paper ; Solid Mechanics ; Surface tension ; Theoretical and Applied Mechanics ; Wire</subject><ispartof>Welding in the world, 2017-11, Vol.61 (6), p.1289-1296</ispartof><rights>International Institute of Welding 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3</citedby><cites>FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ogino, Y.</creatorcontrib><creatorcontrib>Hirata, Y.</creatorcontrib><creatorcontrib>Asai, S.</creatorcontrib><title>Numerical simulation of metal transfer in pulsed-MIG welding</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>Pulsed currents of various shapes have been employed to control the metal transfer phenomena. In the present study, a simulation model including both the arc plasma and the metal transfer is constructed, and their behaviors in pulsed-MIG arc welding are numerically investigated. When the peak current is set to 450 A and the peak time is set to 1.5 ms, only a single droplet is transferred per pulse. The numerical model can indicate the metal transfer and arc plasma behavior depending on the pulse shape. The temperature of the arc plasma increases rapidly at the early phase of the peak time, and consequently, the temperature of the wire electrode increases. After that, a large amount of the metal vapor generates from the wire tip, and the arc temperature decreases. These behaviors are periodic and can be controlled through the pulse shape. In addition, the appropriate pulse frequency depends on the surface tension of the wire electrode. This result shows that balance of the surface tension and the electromagnetic force is important to determine the droplet behavior. Therefore, in controlling the welding process, it is important to consider the properties of both the welding power source and the welding material.</description><subject>Behavior</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Electrodes</subject><subject>Gas metal arc welding</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>MIG welding</subject><subject>Plasma</subject><subject>Plasma arc welding</subject><subject>Plasmas (physics)</subject><subject>Pulse shape</subject><subject>Research Paper</subject><subject>Solid Mechanics</subject><subject>Surface tension</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wire</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbV9sLbmTQcWDUja5DkqZDhz7GpEX892aoCzcuLgcO55wLHyHXDG4ZQHEXJTCUFFhBQSKn4oQsWFmUNM9zPCULACko52V5Ti5i3AMApluQ-9ep86Fxps1i002tGZuhz4Y66_yYvDGYPtY-ZE2fHaY2-oq-bNbZl2-rpt9dkrPaJPPqV5fk4-nxffVMt2_rzephS50o-Ug9WKmcxdqWileIzjGuLHDnK6MqNIDSCsPQWoOltVZyBJ4XNnfoFHe1WJKbefcQhs_Jx1Hvhyn06aVmqCBXUjCZUmxOuTDEGHytD6HpTPjWDPQRkp4h6QRJHyFpkTp87sSU7Xc-_Fn-t_QDMtZplg</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Ogino, Y.</creator><creator>Hirata, Y.</creator><creator>Asai, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171101</creationdate><title>Numerical simulation of metal transfer in pulsed-MIG welding</title><author>Ogino, Y. ; Hirata, Y. ; Asai, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Behavior</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Electrodes</topic><topic>Gas metal arc welding</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>MIG welding</topic><topic>Plasma</topic><topic>Plasma arc welding</topic><topic>Plasmas (physics)</topic><topic>Pulse shape</topic><topic>Research Paper</topic><topic>Solid Mechanics</topic><topic>Surface tension</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogino, Y.</creatorcontrib><creatorcontrib>Hirata, Y.</creatorcontrib><creatorcontrib>Asai, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogino, Y.</au><au>Hirata, Y.</au><au>Asai, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of metal transfer in pulsed-MIG welding</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>61</volume><issue>6</issue><spage>1289</spage><epage>1296</epage><pages>1289-1296</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>Pulsed currents of various shapes have been employed to control the metal transfer phenomena. In the present study, a simulation model including both the arc plasma and the metal transfer is constructed, and their behaviors in pulsed-MIG arc welding are numerically investigated. When the peak current is set to 450 A and the peak time is set to 1.5 ms, only a single droplet is transferred per pulse. The numerical model can indicate the metal transfer and arc plasma behavior depending on the pulse shape. The temperature of the arc plasma increases rapidly at the early phase of the peak time, and consequently, the temperature of the wire electrode increases. After that, a large amount of the metal vapor generates from the wire tip, and the arc temperature decreases. These behaviors are periodic and can be controlled through the pulse shape. In addition, the appropriate pulse frequency depends on the surface tension of the wire electrode. This result shows that balance of the surface tension and the electromagnetic force is important to determine the droplet behavior. Therefore, in controlling the welding process, it is important to consider the properties of both the welding power source and the welding material.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-017-0492-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-2288
ispartof Welding in the world, 2017-11, Vol.61 (6), p.1289-1296
issn 0043-2288
1878-6669
language eng
recordid cdi_proquest_journals_1950654314
source Springer Link
subjects Behavior
Chemistry and Materials Science
Computer simulation
Electrodes
Gas metal arc welding
Materials Science
Mathematical models
Metallic Materials
MIG welding
Plasma
Plasma arc welding
Plasmas (physics)
Pulse shape
Research Paper
Solid Mechanics
Surface tension
Theoretical and Applied Mechanics
Wire
title Numerical simulation of metal transfer in pulsed-MIG welding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20metal%20transfer%20in%20pulsed-MIG%20welding&rft.jtitle=Welding%20in%20the%20world&rft.au=Ogino,%20Y.&rft.date=2017-11-01&rft.volume=61&rft.issue=6&rft.spage=1289&rft.epage=1296&rft.pages=1289-1296&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-017-0492-3&rft_dat=%3Cproquest_cross%3E1950654314%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1950654314&rft_id=info:pmid/&rfr_iscdi=true