Loading…
Numerical simulation of metal transfer in pulsed-MIG welding
Pulsed currents of various shapes have been employed to control the metal transfer phenomena. In the present study, a simulation model including both the arc plasma and the metal transfer is constructed, and their behaviors in pulsed-MIG arc welding are numerically investigated. When the peak curren...
Saved in:
Published in: | Welding in the world 2017-11, Vol.61 (6), p.1289-1296 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3 |
container_end_page | 1296 |
container_issue | 6 |
container_start_page | 1289 |
container_title | Welding in the world |
container_volume | 61 |
creator | Ogino, Y. Hirata, Y. Asai, S. |
description | Pulsed currents of various shapes have been employed to control the metal transfer phenomena. In the present study, a simulation model including both the arc plasma and the metal transfer is constructed, and their behaviors in pulsed-MIG arc welding are numerically investigated. When the peak current is set to 450 A and the peak time is set to 1.5 ms, only a single droplet is transferred per pulse. The numerical model can indicate the metal transfer and arc plasma behavior depending on the pulse shape. The temperature of the arc plasma increases rapidly at the early phase of the peak time, and consequently, the temperature of the wire electrode increases. After that, a large amount of the metal vapor generates from the wire tip, and the arc temperature decreases. These behaviors are periodic and can be controlled through the pulse shape. In addition, the appropriate pulse frequency depends on the surface tension of the wire electrode. This result shows that balance of the surface tension and the electromagnetic force is important to determine the droplet behavior. Therefore, in controlling the welding process, it is important to consider the properties of both the welding power source and the welding material. |
doi_str_mv | 10.1007/s40194-017-0492-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1950654314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950654314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbV9sLbmTQcWDUja5DkqZDhz7GpEX892aoCzcuLgcO55wLHyHXDG4ZQHEXJTCUFFhBQSKn4oQsWFmUNM9zPCULACko52V5Ti5i3AMApluQ-9ep86Fxps1i002tGZuhz4Y66_yYvDGYPtY-ZE2fHaY2-oq-bNbZl2-rpt9dkrPaJPPqV5fk4-nxffVMt2_rzephS50o-Ug9WKmcxdqWileIzjGuLHDnK6MqNIDSCsPQWoOltVZyBJ4XNnfoFHe1WJKbefcQhs_Jx1Hvhyn06aVmqCBXUjCZUmxOuTDEGHytD6HpTPjWDPQRkp4h6QRJHyFpkTp87sSU7Xc-_Fn-t_QDMtZplg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950654314</pqid></control><display><type>article</type><title>Numerical simulation of metal transfer in pulsed-MIG welding</title><source>Springer Link</source><creator>Ogino, Y. ; Hirata, Y. ; Asai, S.</creator><creatorcontrib>Ogino, Y. ; Hirata, Y. ; Asai, S.</creatorcontrib><description>Pulsed currents of various shapes have been employed to control the metal transfer phenomena. In the present study, a simulation model including both the arc plasma and the metal transfer is constructed, and their behaviors in pulsed-MIG arc welding are numerically investigated. When the peak current is set to 450 A and the peak time is set to 1.5 ms, only a single droplet is transferred per pulse. The numerical model can indicate the metal transfer and arc plasma behavior depending on the pulse shape. The temperature of the arc plasma increases rapidly at the early phase of the peak time, and consequently, the temperature of the wire electrode increases. After that, a large amount of the metal vapor generates from the wire tip, and the arc temperature decreases. These behaviors are periodic and can be controlled through the pulse shape. In addition, the appropriate pulse frequency depends on the surface tension of the wire electrode. This result shows that balance of the surface tension and the electromagnetic force is important to determine the droplet behavior. Therefore, in controlling the welding process, it is important to consider the properties of both the welding power source and the welding material.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-017-0492-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Behavior ; Chemistry and Materials Science ; Computer simulation ; Electrodes ; Gas metal arc welding ; Materials Science ; Mathematical models ; Metallic Materials ; MIG welding ; Plasma ; Plasma arc welding ; Plasmas (physics) ; Pulse shape ; Research Paper ; Solid Mechanics ; Surface tension ; Theoretical and Applied Mechanics ; Wire</subject><ispartof>Welding in the world, 2017-11, Vol.61 (6), p.1289-1296</ispartof><rights>International Institute of Welding 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3</citedby><cites>FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ogino, Y.</creatorcontrib><creatorcontrib>Hirata, Y.</creatorcontrib><creatorcontrib>Asai, S.</creatorcontrib><title>Numerical simulation of metal transfer in pulsed-MIG welding</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>Pulsed currents of various shapes have been employed to control the metal transfer phenomena. In the present study, a simulation model including both the arc plasma and the metal transfer is constructed, and their behaviors in pulsed-MIG arc welding are numerically investigated. When the peak current is set to 450 A and the peak time is set to 1.5 ms, only a single droplet is transferred per pulse. The numerical model can indicate the metal transfer and arc plasma behavior depending on the pulse shape. The temperature of the arc plasma increases rapidly at the early phase of the peak time, and consequently, the temperature of the wire electrode increases. After that, a large amount of the metal vapor generates from the wire tip, and the arc temperature decreases. These behaviors are periodic and can be controlled through the pulse shape. In addition, the appropriate pulse frequency depends on the surface tension of the wire electrode. This result shows that balance of the surface tension and the electromagnetic force is important to determine the droplet behavior. Therefore, in controlling the welding process, it is important to consider the properties of both the welding power source and the welding material.</description><subject>Behavior</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Electrodes</subject><subject>Gas metal arc welding</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>MIG welding</subject><subject>Plasma</subject><subject>Plasma arc welding</subject><subject>Plasmas (physics)</subject><subject>Pulse shape</subject><subject>Research Paper</subject><subject>Solid Mechanics</subject><subject>Surface tension</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wire</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19GbV9sLbmTQcWDUja5DkqZDhz7GpEX892aoCzcuLgcO55wLHyHXDG4ZQHEXJTCUFFhBQSKn4oQsWFmUNM9zPCULACko52V5Ti5i3AMApluQ-9ep86Fxps1i002tGZuhz4Y66_yYvDGYPtY-ZE2fHaY2-oq-bNbZl2-rpt9dkrPaJPPqV5fk4-nxffVMt2_rzephS50o-Ug9WKmcxdqWileIzjGuLHDnK6MqNIDSCsPQWoOltVZyBJ4XNnfoFHe1WJKbefcQhs_Jx1Hvhyn06aVmqCBXUjCZUmxOuTDEGHytD6HpTPjWDPQRkp4h6QRJHyFpkTp87sSU7Xc-_Fn-t_QDMtZplg</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Ogino, Y.</creator><creator>Hirata, Y.</creator><creator>Asai, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171101</creationdate><title>Numerical simulation of metal transfer in pulsed-MIG welding</title><author>Ogino, Y. ; Hirata, Y. ; Asai, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Behavior</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Electrodes</topic><topic>Gas metal arc welding</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>MIG welding</topic><topic>Plasma</topic><topic>Plasma arc welding</topic><topic>Plasmas (physics)</topic><topic>Pulse shape</topic><topic>Research Paper</topic><topic>Solid Mechanics</topic><topic>Surface tension</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogino, Y.</creatorcontrib><creatorcontrib>Hirata, Y.</creatorcontrib><creatorcontrib>Asai, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogino, Y.</au><au>Hirata, Y.</au><au>Asai, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of metal transfer in pulsed-MIG welding</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>61</volume><issue>6</issue><spage>1289</spage><epage>1296</epage><pages>1289-1296</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>Pulsed currents of various shapes have been employed to control the metal transfer phenomena. In the present study, a simulation model including both the arc plasma and the metal transfer is constructed, and their behaviors in pulsed-MIG arc welding are numerically investigated. When the peak current is set to 450 A and the peak time is set to 1.5 ms, only a single droplet is transferred per pulse. The numerical model can indicate the metal transfer and arc plasma behavior depending on the pulse shape. The temperature of the arc plasma increases rapidly at the early phase of the peak time, and consequently, the temperature of the wire electrode increases. After that, a large amount of the metal vapor generates from the wire tip, and the arc temperature decreases. These behaviors are periodic and can be controlled through the pulse shape. In addition, the appropriate pulse frequency depends on the surface tension of the wire electrode. This result shows that balance of the surface tension and the electromagnetic force is important to determine the droplet behavior. Therefore, in controlling the welding process, it is important to consider the properties of both the welding power source and the welding material.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-017-0492-3</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-2288 |
ispartof | Welding in the world, 2017-11, Vol.61 (6), p.1289-1296 |
issn | 0043-2288 1878-6669 |
language | eng |
recordid | cdi_proquest_journals_1950654314 |
source | Springer Link |
subjects | Behavior Chemistry and Materials Science Computer simulation Electrodes Gas metal arc welding Materials Science Mathematical models Metallic Materials MIG welding Plasma Plasma arc welding Plasmas (physics) Pulse shape Research Paper Solid Mechanics Surface tension Theoretical and Applied Mechanics Wire |
title | Numerical simulation of metal transfer in pulsed-MIG welding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20metal%20transfer%20in%20pulsed-MIG%20welding&rft.jtitle=Welding%20in%20the%20world&rft.au=Ogino,%20Y.&rft.date=2017-11-01&rft.volume=61&rft.issue=6&rft.spage=1289&rft.epage=1296&rft.pages=1289-1296&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-017-0492-3&rft_dat=%3Cproquest_cross%3E1950654314%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-e0b45cb9fb852d99cc125b02ceda5d9a094b3a19bba98bbb4290267b6c9c52cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1950654314&rft_id=info:pmid/&rfr_iscdi=true |