Loading…

Endowing plants with tolerance to virus infection by their preliminary treatment with short interfering RNAs

RNA interference (RNAi) is one of the key defense mechanisms directed against virus infections in plants and other organisms. In this case in plants infected with viruses, short interfering RNAs (siRNAs) are formed from two-chain replicated forms of virus molecules of RNA. These siRNAs program one o...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of plant physiology 2017-11, Vol.64 (6), p.939-945
Main Authors: Sutula, M. Yu, Akbassova, A. Zh, Yergaliev, T. M., Nurbekova, Zh. A., Mukiyanova, G. S., Omarov, R. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RNA interference (RNAi) is one of the key defense mechanisms directed against virus infections in plants and other organisms. In this case in plants infected with viruses, short interfering RNAs (siRNAs) are formed from two-chain replicated forms of virus molecules of RNA. These siRNAs program one of the RNAi basic components, RNA-induced complex of genes silencing (RISC, R NA i nduced s ilencing c omplex) associated with sequence-specific removing virus RNA. Virus protein P19 is a suppressor of RNAi and is capable of trapping the siRNAs being formed before their binding with RISC. Here, it was shown that preliminary entering leaves of plants Nicotiana benthamiana Domin (before virus infecting) of siRNAs eluted from the complex P19/siRNA from the infected plant lowers development of infection symptoms induced by tomato bushy stunt virus (TBSV) in inoculated plants. Exogenous addition of suppressor-associated siRNAs to plants leads to not only lowering virus accumulation but also to survival of infected plants. Thus, it has been established that preliminary addition of virus siRNAs elevates plant tolerance to the virus infection by means of early programming RISC and activation of the defense action of RNAi.
ISSN:1021-4437
1608-3407
DOI:10.1134/S1021443717060103