Loading…
High Throughput Screening of High-Affinity Ligands for Proteins with Anion-Binding Sites using Desorption Electrospray Ionization (DESI) Mass Spectrometry
A high throughput screening system involving a linear ion trap (LTQ) analyzer, a house-made platform and a desorption electrospray ionization (DESI) source was established to screen ligands with a high affinity for proteins with anion-binding sites. The complexes were analyzed after incubation, ultr...
Saved in:
Published in: | Journal of the American Society for Mass Spectrometry 2014-03, Vol.25 (3), p.454-463 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A high throughput screening system involving a linear ion trap (LTQ) analyzer, a house-made platform and a desorption electrospray ionization (DESI) source was established to screen ligands with a high affinity for proteins with anion-binding sites. The complexes were analyzed after incubation, ultrafiltration, washing, and displacement. A new anionic region inhibited dissociation (ARID) mechanism that was suitable for a protein with anion-binding site was proposed. We utilized the differences in detectable dissociation of protein–ligand complexes, combined with displacement experiments, to distinguish free ligands displaced from anion-binding sites from liberated ligands dissociated from nonspecific interactions. The method was validated by α
1
-acid glycoprotein (AGP) and (R), (S)-amlodipine. Site-specific enantioselectivity shown in our experiments was consistent with earlier studies. Obtaining all of the qualitative information of 15*3 samples in 2.3 min indicates that the analysis process is no longer the time-limiting step in the initial stage of drug discovery. Quantitative information verified that our method was at least a semiquantitative method.
Figure
ᅟ |
---|---|
ISSN: | 1044-0305 1879-1123 |
DOI: | 10.1007/s13361-013-0753-3 |