Loading…

Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating

During the electron-beam evaporation of metals, a weakly ionized plasma is formed, which consists of two different groups of electrons characterized by different energy spreads (or temperature). While this plasma expands along with the metal vapor, a thermodynamic equilibrium between these two group...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2009-07, Vol.37 (7), p.1196-1202
Main Authors: Dikshit, B., Zende, G.R., Bhatia, M.S., Suri, B.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743
cites cdi_FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743
container_end_page 1202
container_issue 7
container_start_page 1196
container_title IEEE transactions on plasma science
container_volume 37
creator Dikshit, B.
Zende, G.R.
Bhatia, M.S.
Suri, B.M.
description During the electron-beam evaporation of metals, a weakly ionized plasma is formed, which consists of two different groups of electrons characterized by different energy spreads (or temperature). While this plasma expands along with the metal vapor, a thermodynamic equilibrium between these two groups of electrons is gradually established by electron-electron Coulomb collisions and electron-atom inelastic collisions. The evolution of this two-temperature plasma was experimentally observed by a Langmuir probe during an electron-beam evaporation of zirconium. Mathematical expressions for the effect of different interactions on the evolution of the electron temperatures of the plasma were derived and applied to our experimental observations. Taking the initial temperature of the plasma at the source of vapor, the total cross section for electron-atom inelastic collisions was calculated, the order of which agreed well with the reported values. Finally, the contributions of each type of interaction (electron-electron and electron-atom) on the cooling of the high-temperature group of electrons in the plasma are quantified.
doi_str_mv 10.1109/TPS.2009.2020904
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_195176465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075564</ieee_id><sourcerecordid>1778381211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EEkvhjsTFQoKeUsZ2bMdHqLYtUhGVWOAYTZwJpEri1E6A_nu82lUPHLjMjPS-N5rRY-ylgDMhwL3b3Xw5kwAuFwkOykdsI5xyhVNWP2abrKhCVUI9Zc9SugUQpQa5YX77Kwzr0oeJh44j3_0OxY7GmSIuayR-M2AakW__zDi1_fSDf--Xn_wTLTjwbziHyC9p2sPU8uaebwfySwxT8YFw5FeES_Y8Z086HBK9OPYT9vViuzu_Kq4_X348f39deFWppehQ-qYFKy1qbFWJjQKTByccAaq2Atn6rhHKkQLRQgNotXK6EZ5A2FKdsNPD3jmGu5XSUo998jQMOFFYU10ZV5XSacjk2_-SyigjjdmDr_8Bb8Map_xFLZwW1pRGZwgOkI8hpUhdPcd-xHhfC6j34dQ5nHofTn0MJ1veHPdi8jh0ESffpwefFFU-wNrMvTpwPRE9yBqs1qZUfwEAVZbD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195176465</pqid></control><display><type>article</type><title>Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dikshit, B. ; Zende, G.R. ; Bhatia, M.S. ; Suri, B.M.</creator><creatorcontrib>Dikshit, B. ; Zende, G.R. ; Bhatia, M.S. ; Suri, B.M.</creatorcontrib><description>During the electron-beam evaporation of metals, a weakly ionized plasma is formed, which consists of two different groups of electrons characterized by different energy spreads (or temperature). While this plasma expands along with the metal vapor, a thermodynamic equilibrium between these two groups of electrons is gradually established by electron-electron Coulomb collisions and electron-atom inelastic collisions. The evolution of this two-temperature plasma was experimentally observed by a Langmuir probe during an electron-beam evaporation of zirconium. Mathematical expressions for the effect of different interactions on the evolution of the electron temperatures of the plasma were derived and applied to our experimental observations. Taking the initial temperature of the plasma at the source of vapor, the total cross section for electron-atom inelastic collisions was calculated, the order of which agreed well with the reported values. Finally, the contributions of each type of interaction (electron-electron and electron-atom) on the cooling of the high-temperature group of electrons in the plasma are quantified.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2009.2020904</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Atomic beams ; Cooling ; Coulomb collisions ; Cross sections ; Electric and magnetic measurements ; Electrons ; Evaporation ; Evolution ; Exact sciences and technology ; Heating ; Inelastic collisions ; Ionization ; langmuir probe ; Mathematical analysis ; Metal vapors ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma applications ; Plasma diagnostic techniques and instrumentation ; Plasma sources ; Plasma temperature ; Probes ; Temperature ; Thermodynamic equilibrium ; Thermodynamics ; two-temperature plasma ; Zirconium</subject><ispartof>IEEE transactions on plasma science, 2009-07, Vol.37 (7), p.1196-1202</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743</citedby><cites>FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21836277$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dikshit, B.</creatorcontrib><creatorcontrib>Zende, G.R.</creatorcontrib><creatorcontrib>Bhatia, M.S.</creatorcontrib><creatorcontrib>Suri, B.M.</creatorcontrib><title>Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>During the electron-beam evaporation of metals, a weakly ionized plasma is formed, which consists of two different groups of electrons characterized by different energy spreads (or temperature). While this plasma expands along with the metal vapor, a thermodynamic equilibrium between these two groups of electrons is gradually established by electron-electron Coulomb collisions and electron-atom inelastic collisions. The evolution of this two-temperature plasma was experimentally observed by a Langmuir probe during an electron-beam evaporation of zirconium. Mathematical expressions for the effect of different interactions on the evolution of the electron temperatures of the plasma were derived and applied to our experimental observations. Taking the initial temperature of the plasma at the source of vapor, the total cross section for electron-atom inelastic collisions was calculated, the order of which agreed well with the reported values. Finally, the contributions of each type of interaction (electron-electron and electron-atom) on the cooling of the high-temperature group of electrons in the plasma are quantified.</description><subject>Atomic beams</subject><subject>Cooling</subject><subject>Coulomb collisions</subject><subject>Cross sections</subject><subject>Electric and magnetic measurements</subject><subject>Electrons</subject><subject>Evaporation</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Heating</subject><subject>Inelastic collisions</subject><subject>Ionization</subject><subject>langmuir probe</subject><subject>Mathematical analysis</subject><subject>Metal vapors</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma applications</subject><subject>Plasma diagnostic techniques and instrumentation</subject><subject>Plasma sources</subject><subject>Plasma temperature</subject><subject>Probes</subject><subject>Temperature</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><subject>two-temperature plasma</subject><subject>Zirconium</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EEkvhjsTFQoKeUsZ2bMdHqLYtUhGVWOAYTZwJpEri1E6A_nu82lUPHLjMjPS-N5rRY-ylgDMhwL3b3Xw5kwAuFwkOykdsI5xyhVNWP2abrKhCVUI9Zc9SugUQpQa5YX77Kwzr0oeJh44j3_0OxY7GmSIuayR-M2AakW__zDi1_fSDf--Xn_wTLTjwbziHyC9p2sPU8uaebwfySwxT8YFw5FeES_Y8Z086HBK9OPYT9vViuzu_Kq4_X348f39deFWppehQ-qYFKy1qbFWJjQKTByccAaq2Atn6rhHKkQLRQgNotXK6EZ5A2FKdsNPD3jmGu5XSUo998jQMOFFYU10ZV5XSacjk2_-SyigjjdmDr_8Bb8Map_xFLZwW1pRGZwgOkI8hpUhdPcd-xHhfC6j34dQ5nHofTn0MJ1veHPdi8jh0ESffpwefFFU-wNrMvTpwPRE9yBqs1qZUfwEAVZbD</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Dikshit, B.</creator><creator>Zende, G.R.</creator><creator>Bhatia, M.S.</creator><creator>Suri, B.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090701</creationdate><title>Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating</title><author>Dikshit, B. ; Zende, G.R. ; Bhatia, M.S. ; Suri, B.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atomic beams</topic><topic>Cooling</topic><topic>Coulomb collisions</topic><topic>Cross sections</topic><topic>Electric and magnetic measurements</topic><topic>Electrons</topic><topic>Evaporation</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Heating</topic><topic>Inelastic collisions</topic><topic>Ionization</topic><topic>langmuir probe</topic><topic>Mathematical analysis</topic><topic>Metal vapors</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma applications</topic><topic>Plasma diagnostic techniques and instrumentation</topic><topic>Plasma sources</topic><topic>Plasma temperature</topic><topic>Probes</topic><topic>Temperature</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><topic>two-temperature plasma</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dikshit, B.</creatorcontrib><creatorcontrib>Zende, G.R.</creatorcontrib><creatorcontrib>Bhatia, M.S.</creatorcontrib><creatorcontrib>Suri, B.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dikshit, B.</au><au>Zende, G.R.</au><au>Bhatia, M.S.</au><au>Suri, B.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>37</volume><issue>7</issue><spage>1196</spage><epage>1202</epage><pages>1196-1202</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>During the electron-beam evaporation of metals, a weakly ionized plasma is formed, which consists of two different groups of electrons characterized by different energy spreads (or temperature). While this plasma expands along with the metal vapor, a thermodynamic equilibrium between these two groups of electrons is gradually established by electron-electron Coulomb collisions and electron-atom inelastic collisions. The evolution of this two-temperature plasma was experimentally observed by a Langmuir probe during an electron-beam evaporation of zirconium. Mathematical expressions for the effect of different interactions on the evolution of the electron temperatures of the plasma were derived and applied to our experimental observations. Taking the initial temperature of the plasma at the source of vapor, the total cross section for electron-atom inelastic collisions was calculated, the order of which agreed well with the reported values. Finally, the contributions of each type of interaction (electron-electron and electron-atom) on the cooling of the high-temperature group of electrons in the plasma are quantified.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2009.2020904</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2009-07, Vol.37 (7), p.1196-1202
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_journals_195176465
source IEEE Electronic Library (IEL) Journals
subjects Atomic beams
Cooling
Coulomb collisions
Cross sections
Electric and magnetic measurements
Electrons
Evaporation
Evolution
Exact sciences and technology
Heating
Inelastic collisions
Ionization
langmuir probe
Mathematical analysis
Metal vapors
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma
Plasma applications
Plasma diagnostic techniques and instrumentation
Plasma sources
Plasma temperature
Probes
Temperature
Thermodynamic equilibrium
Thermodynamics
two-temperature plasma
Zirconium
title Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20a%20Two-Temperature%20Plasma%20Expanding%20With%20Metal%20Vapor%20Generated%20by%20Electron-Beam%20Heating&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Dikshit,%20B.&rft.date=2009-07-01&rft.volume=37&rft.issue=7&rft.spage=1196&rft.epage=1202&rft.pages=1196-1202&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2009.2020904&rft_dat=%3Cproquest_ieee_%3E1778381211%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195176465&rft_id=info:pmid/&rft_ieee_id=5075564&rfr_iscdi=true