Loading…
Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating
During the electron-beam evaporation of metals, a weakly ionized plasma is formed, which consists of two different groups of electrons characterized by different energy spreads (or temperature). While this plasma expands along with the metal vapor, a thermodynamic equilibrium between these two group...
Saved in:
Published in: | IEEE transactions on plasma science 2009-07, Vol.37 (7), p.1196-1202 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743 |
container_end_page | 1202 |
container_issue | 7 |
container_start_page | 1196 |
container_title | IEEE transactions on plasma science |
container_volume | 37 |
creator | Dikshit, B. Zende, G.R. Bhatia, M.S. Suri, B.M. |
description | During the electron-beam evaporation of metals, a weakly ionized plasma is formed, which consists of two different groups of electrons characterized by different energy spreads (or temperature). While this plasma expands along with the metal vapor, a thermodynamic equilibrium between these two groups of electrons is gradually established by electron-electron Coulomb collisions and electron-atom inelastic collisions. The evolution of this two-temperature plasma was experimentally observed by a Langmuir probe during an electron-beam evaporation of zirconium. Mathematical expressions for the effect of different interactions on the evolution of the electron temperatures of the plasma were derived and applied to our experimental observations. Taking the initial temperature of the plasma at the source of vapor, the total cross section for electron-atom inelastic collisions was calculated, the order of which agreed well with the reported values. Finally, the contributions of each type of interaction (electron-electron and electron-atom) on the cooling of the high-temperature group of electrons in the plasma are quantified. |
doi_str_mv | 10.1109/TPS.2009.2020904 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_195176465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075564</ieee_id><sourcerecordid>1778381211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EEkvhjsTFQoKeUsZ2bMdHqLYtUhGVWOAYTZwJpEri1E6A_nu82lUPHLjMjPS-N5rRY-ylgDMhwL3b3Xw5kwAuFwkOykdsI5xyhVNWP2abrKhCVUI9Zc9SugUQpQa5YX77Kwzr0oeJh44j3_0OxY7GmSIuayR-M2AakW__zDi1_fSDf--Xn_wTLTjwbziHyC9p2sPU8uaebwfySwxT8YFw5FeES_Y8Z086HBK9OPYT9vViuzu_Kq4_X348f39deFWppehQ-qYFKy1qbFWJjQKTByccAaq2Atn6rhHKkQLRQgNotXK6EZ5A2FKdsNPD3jmGu5XSUo998jQMOFFYU10ZV5XSacjk2_-SyigjjdmDr_8Bb8Map_xFLZwW1pRGZwgOkI8hpUhdPcd-xHhfC6j34dQ5nHofTn0MJ1veHPdi8jh0ESffpwefFFU-wNrMvTpwPRE9yBqs1qZUfwEAVZbD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195176465</pqid></control><display><type>article</type><title>Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dikshit, B. ; Zende, G.R. ; Bhatia, M.S. ; Suri, B.M.</creator><creatorcontrib>Dikshit, B. ; Zende, G.R. ; Bhatia, M.S. ; Suri, B.M.</creatorcontrib><description>During the electron-beam evaporation of metals, a weakly ionized plasma is formed, which consists of two different groups of electrons characterized by different energy spreads (or temperature). While this plasma expands along with the metal vapor, a thermodynamic equilibrium between these two groups of electrons is gradually established by electron-electron Coulomb collisions and electron-atom inelastic collisions. The evolution of this two-temperature plasma was experimentally observed by a Langmuir probe during an electron-beam evaporation of zirconium. Mathematical expressions for the effect of different interactions on the evolution of the electron temperatures of the plasma were derived and applied to our experimental observations. Taking the initial temperature of the plasma at the source of vapor, the total cross section for electron-atom inelastic collisions was calculated, the order of which agreed well with the reported values. Finally, the contributions of each type of interaction (electron-electron and electron-atom) on the cooling of the high-temperature group of electrons in the plasma are quantified.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2009.2020904</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Atomic beams ; Cooling ; Coulomb collisions ; Cross sections ; Electric and magnetic measurements ; Electrons ; Evaporation ; Evolution ; Exact sciences and technology ; Heating ; Inelastic collisions ; Ionization ; langmuir probe ; Mathematical analysis ; Metal vapors ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma applications ; Plasma diagnostic techniques and instrumentation ; Plasma sources ; Plasma temperature ; Probes ; Temperature ; Thermodynamic equilibrium ; Thermodynamics ; two-temperature plasma ; Zirconium</subject><ispartof>IEEE transactions on plasma science, 2009-07, Vol.37 (7), p.1196-1202</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743</citedby><cites>FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21836277$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dikshit, B.</creatorcontrib><creatorcontrib>Zende, G.R.</creatorcontrib><creatorcontrib>Bhatia, M.S.</creatorcontrib><creatorcontrib>Suri, B.M.</creatorcontrib><title>Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>During the electron-beam evaporation of metals, a weakly ionized plasma is formed, which consists of two different groups of electrons characterized by different energy spreads (or temperature). While this plasma expands along with the metal vapor, a thermodynamic equilibrium between these two groups of electrons is gradually established by electron-electron Coulomb collisions and electron-atom inelastic collisions. The evolution of this two-temperature plasma was experimentally observed by a Langmuir probe during an electron-beam evaporation of zirconium. Mathematical expressions for the effect of different interactions on the evolution of the electron temperatures of the plasma were derived and applied to our experimental observations. Taking the initial temperature of the plasma at the source of vapor, the total cross section for electron-atom inelastic collisions was calculated, the order of which agreed well with the reported values. Finally, the contributions of each type of interaction (electron-electron and electron-atom) on the cooling of the high-temperature group of electrons in the plasma are quantified.</description><subject>Atomic beams</subject><subject>Cooling</subject><subject>Coulomb collisions</subject><subject>Cross sections</subject><subject>Electric and magnetic measurements</subject><subject>Electrons</subject><subject>Evaporation</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Heating</subject><subject>Inelastic collisions</subject><subject>Ionization</subject><subject>langmuir probe</subject><subject>Mathematical analysis</subject><subject>Metal vapors</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma applications</subject><subject>Plasma diagnostic techniques and instrumentation</subject><subject>Plasma sources</subject><subject>Plasma temperature</subject><subject>Probes</subject><subject>Temperature</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><subject>two-temperature plasma</subject><subject>Zirconium</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EEkvhjsTFQoKeUsZ2bMdHqLYtUhGVWOAYTZwJpEri1E6A_nu82lUPHLjMjPS-N5rRY-ylgDMhwL3b3Xw5kwAuFwkOykdsI5xyhVNWP2abrKhCVUI9Zc9SugUQpQa5YX77Kwzr0oeJh44j3_0OxY7GmSIuayR-M2AakW__zDi1_fSDf--Xn_wTLTjwbziHyC9p2sPU8uaebwfySwxT8YFw5FeES_Y8Z086HBK9OPYT9vViuzu_Kq4_X348f39deFWppehQ-qYFKy1qbFWJjQKTByccAaq2Atn6rhHKkQLRQgNotXK6EZ5A2FKdsNPD3jmGu5XSUo998jQMOFFYU10ZV5XSacjk2_-SyigjjdmDr_8Bb8Map_xFLZwW1pRGZwgOkI8hpUhdPcd-xHhfC6j34dQ5nHofTn0MJ1veHPdi8jh0ESffpwefFFU-wNrMvTpwPRE9yBqs1qZUfwEAVZbD</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Dikshit, B.</creator><creator>Zende, G.R.</creator><creator>Bhatia, M.S.</creator><creator>Suri, B.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090701</creationdate><title>Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating</title><author>Dikshit, B. ; Zende, G.R. ; Bhatia, M.S. ; Suri, B.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atomic beams</topic><topic>Cooling</topic><topic>Coulomb collisions</topic><topic>Cross sections</topic><topic>Electric and magnetic measurements</topic><topic>Electrons</topic><topic>Evaporation</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Heating</topic><topic>Inelastic collisions</topic><topic>Ionization</topic><topic>langmuir probe</topic><topic>Mathematical analysis</topic><topic>Metal vapors</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma applications</topic><topic>Plasma diagnostic techniques and instrumentation</topic><topic>Plasma sources</topic><topic>Plasma temperature</topic><topic>Probes</topic><topic>Temperature</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><topic>two-temperature plasma</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dikshit, B.</creatorcontrib><creatorcontrib>Zende, G.R.</creatorcontrib><creatorcontrib>Bhatia, M.S.</creatorcontrib><creatorcontrib>Suri, B.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dikshit, B.</au><au>Zende, G.R.</au><au>Bhatia, M.S.</au><au>Suri, B.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>37</volume><issue>7</issue><spage>1196</spage><epage>1202</epage><pages>1196-1202</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>During the electron-beam evaporation of metals, a weakly ionized plasma is formed, which consists of two different groups of electrons characterized by different energy spreads (or temperature). While this plasma expands along with the metal vapor, a thermodynamic equilibrium between these two groups of electrons is gradually established by electron-electron Coulomb collisions and electron-atom inelastic collisions. The evolution of this two-temperature plasma was experimentally observed by a Langmuir probe during an electron-beam evaporation of zirconium. Mathematical expressions for the effect of different interactions on the evolution of the electron temperatures of the plasma were derived and applied to our experimental observations. Taking the initial temperature of the plasma at the source of vapor, the total cross section for electron-atom inelastic collisions was calculated, the order of which agreed well with the reported values. Finally, the contributions of each type of interaction (electron-electron and electron-atom) on the cooling of the high-temperature group of electrons in the plasma are quantified.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2009.2020904</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2009-07, Vol.37 (7), p.1196-1202 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_journals_195176465 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Atomic beams Cooling Coulomb collisions Cross sections Electric and magnetic measurements Electrons Evaporation Evolution Exact sciences and technology Heating Inelastic collisions Ionization langmuir probe Mathematical analysis Metal vapors Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma Plasma applications Plasma diagnostic techniques and instrumentation Plasma sources Plasma temperature Probes Temperature Thermodynamic equilibrium Thermodynamics two-temperature plasma Zirconium |
title | Evolution of a Two-Temperature Plasma Expanding With Metal Vapor Generated by Electron-Beam Heating |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20a%20Two-Temperature%20Plasma%20Expanding%20With%20Metal%20Vapor%20Generated%20by%20Electron-Beam%20Heating&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Dikshit,%20B.&rft.date=2009-07-01&rft.volume=37&rft.issue=7&rft.spage=1196&rft.epage=1202&rft.pages=1196-1202&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2009.2020904&rft_dat=%3Cproquest_ieee_%3E1778381211%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-fa2cbd0727a5ad34ab306ad3919e0a3d802dcfb139e301d0b0a75395b1ce01743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195176465&rft_id=info:pmid/&rft_ieee_id=5075564&rfr_iscdi=true |