Loading…

Jet Flame Ignition in a Supersonic Crossflow Using a Pulsed Nonequilibrium Plasma Discharge

A short-pulse repetitive discharge is used to ignite hydrogen jet flames in supersonic crossflows. Nonequilibrium plasma is produced by repetitive pulses of 7-kV peak voltage, 20-ns pulsewidth, and 50-kHz repetition rate. Sonic or subsonic hydrogen jets are injected into a pure-oxygen supersonic fre...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2008-12, Vol.36 (6), p.2918-2923
Main Authors: Hyungrok Do, Mungal, M.G., Cappelli, M.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A short-pulse repetitive discharge is used to ignite hydrogen jet flames in supersonic crossflows. Nonequilibrium plasma is produced by repetitive pulses of 7-kV peak voltage, 20-ns pulsewidth, and 50-kHz repetition rate. Sonic or subsonic hydrogen jets are injected into a pure-oxygen supersonic free-stream flow of Mach numbers M = 1.7-2.3. The fuel injection nozzles and electrodes are mounted flush with the surface of a flat plate that is oriented to be parallel to the flow to minimize stagnation pressure losses associated with generated shock waves. A configuration combining an upstream subsonic oblique jet and a downstream sonic transverse jet serves to provide an adequate flow condition for jet flame ignition. The flow pattern and shock waves induced by the dual hydrogen jets are characterized by Schlieren imaging. Planar-laser-induced fluorescence and emission spectroscopy are employed for imaging the distribution of OH radicals. The OH fluorescence image of the region in the vicinity of the discharge confirms jet flame ignition by the plasma.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2008.2005986