Loading…
A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications
We report the generation of variable plasma densities up to 10 19 cm -3 in hydrogen-filled hollow cathode capillary discharges and consider their applications as a practical plasma source for particle-beam-driven plasma wakefield accelerators. The capillary consists of a transparent cylindrical boro...
Saved in:
Published in: | IEEE transactions on plasma science 2009-03, Vol.37 (3), p.456-462 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3 |
container_end_page | 462 |
container_issue | 3 |
container_start_page | 456 |
container_title | IEEE transactions on plasma science |
container_volume | 37 |
creator | Hao Chen Kallos, E. Muggli, P. Katsouleas, T.C. Gundersen, M.A. |
description | We report the generation of variable plasma densities up to 10 19 cm -3 in hydrogen-filled hollow cathode capillary discharges and consider their applications as a practical plasma source for particle-beam-driven plasma wakefield accelerators. The capillary consists of a transparent cylindrical borosilicate glass tube. The plasma density is determined as a function of time, using Stark broadening of the H alpha line, with a resolution of 50 ns, and is found to decay exponentially with a typical time constant of several hundreds of nanoseconds. The time delay between the discharge and the drive electron beam can therefore be tuned to reach the density appropriate for the maximum acceleration gradient. The dependence of the plasma density on the capillary geometry and gas pressure is discussed, and the results of optical studies of the discharge channel formation process are presented. The implications of the results for beam-driven plasma accelerators araree discussed. |
doi_str_mv | 10.1109/TPS.2008.2011799 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_195184395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4787033</ieee_id><sourcerecordid>34495054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3</originalsourceid><addsrcrecordid>eNp90UFr2zAUB3AzNmjW9V7YxQzWntRKepItHdO0WwaFBdqxo3mRnzt1iu1KziDffgoJPeywi3TQ7z303r8ozgW_EoLb68fVw5Xk3ORDiNraN8VMWLDMQq3fFjPOLTAwAk6K9yk9cy6U5nJWvMzLpX_6xW6pT37alctdG4cn6tkNJmrLBY4-BIy7chUwbbB8GLbRUdkNsVxhnLwLxG4IN-w2-j_Ulz_xN3WeQlvOnaNAEadM5-MYvMPJD336ULzrMCQ6O96nxY8vd4-LJbv__vXbYn7PHBiYmJFku7rlQPXaSNsaWINAQUo7y41wAhxKqt3acrQSqZW2qpREAGsqBQ5Oi8tD3zEOL1tKU7PxKX8pYE_DNjWmskZzU0GWF_-VoJTVXKsMP_0Dn_M6-jxFI6wWRoHVGfEDcnFIKVLXjNFv8gobwZt9VE2OqtlH1RyjyiWfj30xOQxdxN759Fonhaql0nv38eA8Eb0-q9rUHAD-AlAom6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195184395</pqid></control><display><type>article</type><title>A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hao Chen ; Kallos, E. ; Muggli, P. ; Katsouleas, T.C. ; Gundersen, M.A.</creator><creatorcontrib>Hao Chen ; Kallos, E. ; Muggli, P. ; Katsouleas, T.C. ; Gundersen, M.A.</creatorcontrib><description>We report the generation of variable plasma densities up to 10 19 cm -3 in hydrogen-filled hollow cathode capillary discharges and consider their applications as a practical plasma source for particle-beam-driven plasma wakefield accelerators. The capillary consists of a transparent cylindrical borosilicate glass tube. The plasma density is determined as a function of time, using Stark broadening of the H alpha line, with a resolution of 50 ns, and is found to decay exponentially with a typical time constant of several hundreds of nanoseconds. The time delay between the discharge and the drive electron beam can therefore be tuned to reach the density appropriate for the maximum acceleration gradient. The dependence of the plasma density on the capillary geometry and gas pressure is discussed, and the results of optical studies of the discharge channel formation process are presented. The implications of the results for beam-driven plasma accelerators araree discussed.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2008.2011799</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Accelerators ; Borosilicate glasses ; Capillarity ; Capillary ; Cathodes ; Channels ; Delay effects ; Density ; Drives ; Electric discharges ; Exact sciences and technology ; Fault location ; gas discharge ; Glass ; Hydrogen ; Nanostructure ; Other gas discharges ; Particle accelerators ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma accelerators ; Plasma applications ; Plasma density ; Plasma production and heating ; Plasma sources ; plasma wakefield accelerator (PWFA) ; pulsed power</subject><ispartof>IEEE transactions on plasma science, 2009-03, Vol.37 (3), p.456-462</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3</citedby><cites>FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4787033$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21472459$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao Chen</creatorcontrib><creatorcontrib>Kallos, E.</creatorcontrib><creatorcontrib>Muggli, P.</creatorcontrib><creatorcontrib>Katsouleas, T.C.</creatorcontrib><creatorcontrib>Gundersen, M.A.</creatorcontrib><title>A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>We report the generation of variable plasma densities up to 10 19 cm -3 in hydrogen-filled hollow cathode capillary discharges and consider their applications as a practical plasma source for particle-beam-driven plasma wakefield accelerators. The capillary consists of a transparent cylindrical borosilicate glass tube. The plasma density is determined as a function of time, using Stark broadening of the H alpha line, with a resolution of 50 ns, and is found to decay exponentially with a typical time constant of several hundreds of nanoseconds. The time delay between the discharge and the drive electron beam can therefore be tuned to reach the density appropriate for the maximum acceleration gradient. The dependence of the plasma density on the capillary geometry and gas pressure is discussed, and the results of optical studies of the discharge channel formation process are presented. The implications of the results for beam-driven plasma accelerators araree discussed.</description><subject>Acceleration</subject><subject>Accelerators</subject><subject>Borosilicate glasses</subject><subject>Capillarity</subject><subject>Capillary</subject><subject>Cathodes</subject><subject>Channels</subject><subject>Delay effects</subject><subject>Density</subject><subject>Drives</subject><subject>Electric discharges</subject><subject>Exact sciences and technology</subject><subject>Fault location</subject><subject>gas discharge</subject><subject>Glass</subject><subject>Hydrogen</subject><subject>Nanostructure</subject><subject>Other gas discharges</subject><subject>Particle accelerators</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma accelerators</subject><subject>Plasma applications</subject><subject>Plasma density</subject><subject>Plasma production and heating</subject><subject>Plasma sources</subject><subject>plasma wakefield accelerator (PWFA)</subject><subject>pulsed power</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90UFr2zAUB3AzNmjW9V7YxQzWntRKepItHdO0WwaFBdqxo3mRnzt1iu1KziDffgoJPeywi3TQ7z303r8ozgW_EoLb68fVw5Xk3ORDiNraN8VMWLDMQq3fFjPOLTAwAk6K9yk9cy6U5nJWvMzLpX_6xW6pT37alctdG4cn6tkNJmrLBY4-BIy7chUwbbB8GLbRUdkNsVxhnLwLxG4IN-w2-j_Ulz_xN3WeQlvOnaNAEadM5-MYvMPJD336ULzrMCQ6O96nxY8vd4-LJbv__vXbYn7PHBiYmJFku7rlQPXaSNsaWINAQUo7y41wAhxKqt3acrQSqZW2qpREAGsqBQ5Oi8tD3zEOL1tKU7PxKX8pYE_DNjWmskZzU0GWF_-VoJTVXKsMP_0Dn_M6-jxFI6wWRoHVGfEDcnFIKVLXjNFv8gobwZt9VE2OqtlH1RyjyiWfj30xOQxdxN759Fonhaql0nv38eA8Eb0-q9rUHAD-AlAom6o</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Hao Chen</creator><creator>Kallos, E.</creator><creator>Muggli, P.</creator><creator>Katsouleas, T.C.</creator><creator>Gundersen, M.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090301</creationdate><title>A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications</title><author>Hao Chen ; Kallos, E. ; Muggli, P. ; Katsouleas, T.C. ; Gundersen, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Accelerators</topic><topic>Borosilicate glasses</topic><topic>Capillarity</topic><topic>Capillary</topic><topic>Cathodes</topic><topic>Channels</topic><topic>Delay effects</topic><topic>Density</topic><topic>Drives</topic><topic>Electric discharges</topic><topic>Exact sciences and technology</topic><topic>Fault location</topic><topic>gas discharge</topic><topic>Glass</topic><topic>Hydrogen</topic><topic>Nanostructure</topic><topic>Other gas discharges</topic><topic>Particle accelerators</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma accelerators</topic><topic>Plasma applications</topic><topic>Plasma density</topic><topic>Plasma production and heating</topic><topic>Plasma sources</topic><topic>plasma wakefield accelerator (PWFA)</topic><topic>pulsed power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao Chen</creatorcontrib><creatorcontrib>Kallos, E.</creatorcontrib><creatorcontrib>Muggli, P.</creatorcontrib><creatorcontrib>Katsouleas, T.C.</creatorcontrib><creatorcontrib>Gundersen, M.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao Chen</au><au>Kallos, E.</au><au>Muggli, P.</au><au>Katsouleas, T.C.</au><au>Gundersen, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>37</volume><issue>3</issue><spage>456</spage><epage>462</epage><pages>456-462</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>We report the generation of variable plasma densities up to 10 19 cm -3 in hydrogen-filled hollow cathode capillary discharges and consider their applications as a practical plasma source for particle-beam-driven plasma wakefield accelerators. The capillary consists of a transparent cylindrical borosilicate glass tube. The plasma density is determined as a function of time, using Stark broadening of the H alpha line, with a resolution of 50 ns, and is found to decay exponentially with a typical time constant of several hundreds of nanoseconds. The time delay between the discharge and the drive electron beam can therefore be tuned to reach the density appropriate for the maximum acceleration gradient. The dependence of the plasma density on the capillary geometry and gas pressure is discussed, and the results of optical studies of the discharge channel formation process are presented. The implications of the results for beam-driven plasma accelerators araree discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2008.2011799</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2009-03, Vol.37 (3), p.456-462 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_journals_195184395 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acceleration Accelerators Borosilicate glasses Capillarity Capillary Cathodes Channels Delay effects Density Drives Electric discharges Exact sciences and technology Fault location gas discharge Glass Hydrogen Nanostructure Other gas discharges Particle accelerators Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma Plasma accelerators Plasma applications Plasma density Plasma production and heating Plasma sources plasma wakefield accelerator (PWFA) pulsed power |
title | A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Density%20Hydrogen-Based%20Capillary%20Plasma%20Source%20for%20Particle-Beam-Driven%20Wakefield%20Accelerator%20Applications&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Hao%20Chen&rft.date=2009-03-01&rft.volume=37&rft.issue=3&rft.spage=456&rft.epage=462&rft.pages=456-462&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2008.2011799&rft_dat=%3Cproquest_pasca%3E34495054%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195184395&rft_id=info:pmid/&rft_ieee_id=4787033&rfr_iscdi=true |