Loading…

A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications

We report the generation of variable plasma densities up to 10 19 cm -3 in hydrogen-filled hollow cathode capillary discharges and consider their applications as a practical plasma source for particle-beam-driven plasma wakefield accelerators. The capillary consists of a transparent cylindrical boro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2009-03, Vol.37 (3), p.456-462
Main Authors: Hao Chen, Kallos, E., Muggli, P., Katsouleas, T.C., Gundersen, M.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3
cites cdi_FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3
container_end_page 462
container_issue 3
container_start_page 456
container_title IEEE transactions on plasma science
container_volume 37
creator Hao Chen
Kallos, E.
Muggli, P.
Katsouleas, T.C.
Gundersen, M.A.
description We report the generation of variable plasma densities up to 10 19 cm -3 in hydrogen-filled hollow cathode capillary discharges and consider their applications as a practical plasma source for particle-beam-driven plasma wakefield accelerators. The capillary consists of a transparent cylindrical borosilicate glass tube. The plasma density is determined as a function of time, using Stark broadening of the H alpha line, with a resolution of 50 ns, and is found to decay exponentially with a typical time constant of several hundreds of nanoseconds. The time delay between the discharge and the drive electron beam can therefore be tuned to reach the density appropriate for the maximum acceleration gradient. The dependence of the plasma density on the capillary geometry and gas pressure is discussed, and the results of optical studies of the discharge channel formation process are presented. The implications of the results for beam-driven plasma accelerators araree discussed.
doi_str_mv 10.1109/TPS.2008.2011799
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_195184395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4787033</ieee_id><sourcerecordid>34495054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3</originalsourceid><addsrcrecordid>eNp90UFr2zAUB3AzNmjW9V7YxQzWntRKepItHdO0WwaFBdqxo3mRnzt1iu1KziDffgoJPeywi3TQ7z303r8ozgW_EoLb68fVw5Xk3ORDiNraN8VMWLDMQq3fFjPOLTAwAk6K9yk9cy6U5nJWvMzLpX_6xW6pT37alctdG4cn6tkNJmrLBY4-BIy7chUwbbB8GLbRUdkNsVxhnLwLxG4IN-w2-j_Ulz_xN3WeQlvOnaNAEadM5-MYvMPJD336ULzrMCQ6O96nxY8vd4-LJbv__vXbYn7PHBiYmJFku7rlQPXaSNsaWINAQUo7y41wAhxKqt3acrQSqZW2qpREAGsqBQ5Oi8tD3zEOL1tKU7PxKX8pYE_DNjWmskZzU0GWF_-VoJTVXKsMP_0Dn_M6-jxFI6wWRoHVGfEDcnFIKVLXjNFv8gobwZt9VE2OqtlH1RyjyiWfj30xOQxdxN759Fonhaql0nv38eA8Eb0-q9rUHAD-AlAom6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195184395</pqid></control><display><type>article</type><title>A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hao Chen ; Kallos, E. ; Muggli, P. ; Katsouleas, T.C. ; Gundersen, M.A.</creator><creatorcontrib>Hao Chen ; Kallos, E. ; Muggli, P. ; Katsouleas, T.C. ; Gundersen, M.A.</creatorcontrib><description>We report the generation of variable plasma densities up to 10 19 cm -3 in hydrogen-filled hollow cathode capillary discharges and consider their applications as a practical plasma source for particle-beam-driven plasma wakefield accelerators. The capillary consists of a transparent cylindrical borosilicate glass tube. The plasma density is determined as a function of time, using Stark broadening of the H alpha line, with a resolution of 50 ns, and is found to decay exponentially with a typical time constant of several hundreds of nanoseconds. The time delay between the discharge and the drive electron beam can therefore be tuned to reach the density appropriate for the maximum acceleration gradient. The dependence of the plasma density on the capillary geometry and gas pressure is discussed, and the results of optical studies of the discharge channel formation process are presented. The implications of the results for beam-driven plasma accelerators araree discussed.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2008.2011799</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Accelerators ; Borosilicate glasses ; Capillarity ; Capillary ; Cathodes ; Channels ; Delay effects ; Density ; Drives ; Electric discharges ; Exact sciences and technology ; Fault location ; gas discharge ; Glass ; Hydrogen ; Nanostructure ; Other gas discharges ; Particle accelerators ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma accelerators ; Plasma applications ; Plasma density ; Plasma production and heating ; Plasma sources ; plasma wakefield accelerator (PWFA) ; pulsed power</subject><ispartof>IEEE transactions on plasma science, 2009-03, Vol.37 (3), p.456-462</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3</citedby><cites>FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4787033$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21472459$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao Chen</creatorcontrib><creatorcontrib>Kallos, E.</creatorcontrib><creatorcontrib>Muggli, P.</creatorcontrib><creatorcontrib>Katsouleas, T.C.</creatorcontrib><creatorcontrib>Gundersen, M.A.</creatorcontrib><title>A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>We report the generation of variable plasma densities up to 10 19 cm -3 in hydrogen-filled hollow cathode capillary discharges and consider their applications as a practical plasma source for particle-beam-driven plasma wakefield accelerators. The capillary consists of a transparent cylindrical borosilicate glass tube. The plasma density is determined as a function of time, using Stark broadening of the H alpha line, with a resolution of 50 ns, and is found to decay exponentially with a typical time constant of several hundreds of nanoseconds. The time delay between the discharge and the drive electron beam can therefore be tuned to reach the density appropriate for the maximum acceleration gradient. The dependence of the plasma density on the capillary geometry and gas pressure is discussed, and the results of optical studies of the discharge channel formation process are presented. The implications of the results for beam-driven plasma accelerators araree discussed.</description><subject>Acceleration</subject><subject>Accelerators</subject><subject>Borosilicate glasses</subject><subject>Capillarity</subject><subject>Capillary</subject><subject>Cathodes</subject><subject>Channels</subject><subject>Delay effects</subject><subject>Density</subject><subject>Drives</subject><subject>Electric discharges</subject><subject>Exact sciences and technology</subject><subject>Fault location</subject><subject>gas discharge</subject><subject>Glass</subject><subject>Hydrogen</subject><subject>Nanostructure</subject><subject>Other gas discharges</subject><subject>Particle accelerators</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma accelerators</subject><subject>Plasma applications</subject><subject>Plasma density</subject><subject>Plasma production and heating</subject><subject>Plasma sources</subject><subject>plasma wakefield accelerator (PWFA)</subject><subject>pulsed power</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90UFr2zAUB3AzNmjW9V7YxQzWntRKepItHdO0WwaFBdqxo3mRnzt1iu1KziDffgoJPeywi3TQ7z303r8ozgW_EoLb68fVw5Xk3ORDiNraN8VMWLDMQq3fFjPOLTAwAk6K9yk9cy6U5nJWvMzLpX_6xW6pT37alctdG4cn6tkNJmrLBY4-BIy7chUwbbB8GLbRUdkNsVxhnLwLxG4IN-w2-j_Ulz_xN3WeQlvOnaNAEadM5-MYvMPJD336ULzrMCQ6O96nxY8vd4-LJbv__vXbYn7PHBiYmJFku7rlQPXaSNsaWINAQUo7y41wAhxKqt3acrQSqZW2qpREAGsqBQ5Oi8tD3zEOL1tKU7PxKX8pYE_DNjWmskZzU0GWF_-VoJTVXKsMP_0Dn_M6-jxFI6wWRoHVGfEDcnFIKVLXjNFv8gobwZt9VE2OqtlH1RyjyiWfj30xOQxdxN759Fonhaql0nv38eA8Eb0-q9rUHAD-AlAom6o</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Hao Chen</creator><creator>Kallos, E.</creator><creator>Muggli, P.</creator><creator>Katsouleas, T.C.</creator><creator>Gundersen, M.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090301</creationdate><title>A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications</title><author>Hao Chen ; Kallos, E. ; Muggli, P. ; Katsouleas, T.C. ; Gundersen, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Accelerators</topic><topic>Borosilicate glasses</topic><topic>Capillarity</topic><topic>Capillary</topic><topic>Cathodes</topic><topic>Channels</topic><topic>Delay effects</topic><topic>Density</topic><topic>Drives</topic><topic>Electric discharges</topic><topic>Exact sciences and technology</topic><topic>Fault location</topic><topic>gas discharge</topic><topic>Glass</topic><topic>Hydrogen</topic><topic>Nanostructure</topic><topic>Other gas discharges</topic><topic>Particle accelerators</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma accelerators</topic><topic>Plasma applications</topic><topic>Plasma density</topic><topic>Plasma production and heating</topic><topic>Plasma sources</topic><topic>plasma wakefield accelerator (PWFA)</topic><topic>pulsed power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao Chen</creatorcontrib><creatorcontrib>Kallos, E.</creatorcontrib><creatorcontrib>Muggli, P.</creatorcontrib><creatorcontrib>Katsouleas, T.C.</creatorcontrib><creatorcontrib>Gundersen, M.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao Chen</au><au>Kallos, E.</au><au>Muggli, P.</au><au>Katsouleas, T.C.</au><au>Gundersen, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>37</volume><issue>3</issue><spage>456</spage><epage>462</epage><pages>456-462</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>We report the generation of variable plasma densities up to 10 19 cm -3 in hydrogen-filled hollow cathode capillary discharges and consider their applications as a practical plasma source for particle-beam-driven plasma wakefield accelerators. The capillary consists of a transparent cylindrical borosilicate glass tube. The plasma density is determined as a function of time, using Stark broadening of the H alpha line, with a resolution of 50 ns, and is found to decay exponentially with a typical time constant of several hundreds of nanoseconds. The time delay between the discharge and the drive electron beam can therefore be tuned to reach the density appropriate for the maximum acceleration gradient. The dependence of the plasma density on the capillary geometry and gas pressure is discussed, and the results of optical studies of the discharge channel formation process are presented. The implications of the results for beam-driven plasma accelerators araree discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2008.2011799</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2009-03, Vol.37 (3), p.456-462
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_journals_195184395
source IEEE Electronic Library (IEL) Journals
subjects Acceleration
Accelerators
Borosilicate glasses
Capillarity
Capillary
Cathodes
Channels
Delay effects
Density
Drives
Electric discharges
Exact sciences and technology
Fault location
gas discharge
Glass
Hydrogen
Nanostructure
Other gas discharges
Particle accelerators
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma
Plasma accelerators
Plasma applications
Plasma density
Plasma production and heating
Plasma sources
plasma wakefield accelerator (PWFA)
pulsed power
title A High-Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Density%20Hydrogen-Based%20Capillary%20Plasma%20Source%20for%20Particle-Beam-Driven%20Wakefield%20Accelerator%20Applications&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Hao%20Chen&rft.date=2009-03-01&rft.volume=37&rft.issue=3&rft.spage=456&rft.epage=462&rft.pages=456-462&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2008.2011799&rft_dat=%3Cproquest_pasca%3E34495054%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-82e9f7d03e7b829d83b31a1e45c9081c13ca2e7cb90a92aed296642a3398643c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195184395&rft_id=info:pmid/&rft_ieee_id=4787033&rfr_iscdi=true