Loading…
A high-density, super-high-aspect-ratio microprobe array realized by high-frequency vibration assisted inverse micro w-EDM
This study is focused on the fabrication of a high-density, super-high-aspect-ratio microprobe array using high-frequency vibration assisted inverse micro w-EDM (wire electric discharge machining). An inverse micro w-EDM design in which a brass wire ϕ20μm in diameter is located beneath the workpiece...
Saved in:
Published in: | Journal of materials processing technology 2017-12, Vol.250, p.144-155 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study is focused on the fabrication of a high-density, super-high-aspect-ratio microprobe array using high-frequency vibration assisted inverse micro w-EDM (wire electric discharge machining). An inverse micro w-EDM design in which a brass wire ϕ20μm in diameter is located beneath the workpiece for bottom-up machining is devised. The wire is triggered to a high-frequency oscillation by a piezoelectric actuator thereby changing the flow regime of dielectric fluid and quickly sending out debris from the narrow spark-gap. The debris is rapidly removed via gravity decreasing debris concentration around the wire-electrode thereby reducing the probability of discharge-shorting and heat-accumulation. Combining magnetic force design and micro wire vibration-inhibition, wire-wriggling and wire-swaying are readily minimized. Three kinds of high-density, super-high-aspect-ratio microprobe arrays comprising: (1) straight-type, (2) wave-type, and (3) spanning-type are verified successfully. Studies show that each probe has highly consistent dimensional and form accuracy with aspect-ratio realized at104:1. Experimental results also demonstrate that processing time ‘with’ a high-frequency vibration assistance of 1.6 KHz is about 75–80% that of the time ‘without’ high-frequency vibration, validating inverse micro w-EDM with high-frequency vibration assistance enhancing machining efficiency of microstructure arrays. Additionally, the following aspects are evaluated in detail: wire-tension control, discharge energy, corner path designs, wire-running speed, vibration assistance effect, vibrational frequency, and side-erosion. |
---|---|
ISSN: | 0924-0136 1873-4774 |
DOI: | 10.1016/j.jmatprotec.2017.07.014 |