Loading…
On a smoothed penalty-based algorithm for global optimization
This paper presents a coercive smoothed penalty framework for nonsmooth and nonconvex constrained global optimization problems. The properties of the smoothed penalty function are derived. Convergence to an ε -global minimizer is proved. At each iteration k , the framework requires the ε ( k ) -glob...
Saved in:
Published in: | Journal of global optimization 2017-11, Vol.69 (3), p.561-585 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-93a3d225f76a342554157c3a025a6dd31b168733575dae4f60913dd34b7e77823 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-93a3d225f76a342554157c3a025a6dd31b168733575dae4f60913dd34b7e77823 |
container_end_page | 585 |
container_issue | 3 |
container_start_page | 561 |
container_title | Journal of global optimization |
container_volume | 69 |
creator | Rocha, Ana Maria A. C. Costa, M. Fernanda P. Fernandes, Edite M. G. P. |
description | This paper presents a coercive smoothed penalty framework for nonsmooth and nonconvex constrained global optimization problems. The properties of the smoothed penalty function are derived. Convergence to an
ε
-global minimizer is proved. At each iteration
k
, the framework requires the
ε
(
k
)
-global minimizer of a subproblem, where
ε
(
k
)
→
ε
. We show that the subproblem may be solved by well-known stochastic metaheuristics, as well as by the artificial fish swarm (AFS) algorithm. In the limit, the AFS algorithm convergence to an
ε
(
k
)
-global minimum of the real-valued smoothed penalty function is guaranteed with probability one, using the limiting behavior of Markov chains. In this context, we show that the transition probability of the Markov chain produced by the AFS algorithm, when generating a population where the best fitness is in the
ε
(
k
)
-neighborhood of the global minimum, is one when this property holds in the current population, and is strictly bounded from zero when the property does not hold. Preliminary numerical experiments show that the presented penalty algorithm based on the coercive smoothed penalty gives very competitive results when compared with other penalty-based methods. |
doi_str_mv | 10.1007/s10898-017-0504-2 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1953069465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718416844</galeid><sourcerecordid>A718416844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-93a3d225f76a342554157c3a025a6dd31b168733575dae4f60913dd34b7e77823</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMbucv-JkYKgqvqRKXWC2nMRJXSVxsN2h_HpchYEF3XC60_vePXoRuiewIgDyMRAoygIDkRgEcEwv0IIIyTAtSX6JFlBSgQUAuUY3IRwAoCwEXaCn3ZjpLAzOxb1pssmMuo8nXOmQJt13ztu4H7LW-azrXaX7zE3RDvZbR-vGW3TV6j6Yu9--RJ8vzx-bN7zdvb5v1ltcc8oiLplmDaWilblmnArBE1rNNFCh86ZhpCJ5IRkTUjTa8DaHkrC055U0UhaULdHDfHfy7utoQlQHd_QJNShSCgZ5yXORVKtZ1eneKDu2Lnpdp2rMYGs3mtam_VqSgqd_nCcDmQ21dyF406rJ20H7kyKgzrGqOVaVYlXnWNUZhc6ekLRjZ_wflH9NP6R3eCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953069465</pqid></control><display><type>article</type><title>On a smoothed penalty-based algorithm for global optimization</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Rocha, Ana Maria A. C. ; Costa, M. Fernanda P. ; Fernandes, Edite M. G. P.</creator><creatorcontrib>Rocha, Ana Maria A. C. ; Costa, M. Fernanda P. ; Fernandes, Edite M. G. P.</creatorcontrib><description>This paper presents a coercive smoothed penalty framework for nonsmooth and nonconvex constrained global optimization problems. The properties of the smoothed penalty function are derived. Convergence to an
ε
-global minimizer is proved. At each iteration
k
, the framework requires the
ε
(
k
)
-global minimizer of a subproblem, where
ε
(
k
)
→
ε
. We show that the subproblem may be solved by well-known stochastic metaheuristics, as well as by the artificial fish swarm (AFS) algorithm. In the limit, the AFS algorithm convergence to an
ε
(
k
)
-global minimum of the real-valued smoothed penalty function is guaranteed with probability one, using the limiting behavior of Markov chains. In this context, we show that the transition probability of the Markov chain produced by the AFS algorithm, when generating a population where the best fitness is in the
ε
(
k
)
-neighborhood of the global minimum, is one when this property holds in the current population, and is strictly bounded from zero when the property does not hold. Preliminary numerical experiments show that the presented penalty algorithm based on the coercive smoothed penalty gives very competitive results when compared with other penalty-based methods.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-017-0504-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Coercivity ; Computer Science ; Convergence ; Fitness ; Global optimization ; Iterative methods ; Markov chains ; Markov processes ; Mathematics ; Mathematics and Statistics ; Nonlinear programming ; Operations Research/Decision Theory ; Optimization ; Penalty function ; Real Functions</subject><ispartof>Journal of global optimization, 2017-11, Vol.69 (3), p.561-585</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Journal of Global Optimization is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-93a3d225f76a342554157c3a025a6dd31b168733575dae4f60913dd34b7e77823</citedby><cites>FETCH-LOGICAL-c423t-93a3d225f76a342554157c3a025a6dd31b168733575dae4f60913dd34b7e77823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1953069465/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1953069465?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Rocha, Ana Maria A. C.</creatorcontrib><creatorcontrib>Costa, M. Fernanda P.</creatorcontrib><creatorcontrib>Fernandes, Edite M. G. P.</creatorcontrib><title>On a smoothed penalty-based algorithm for global optimization</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>This paper presents a coercive smoothed penalty framework for nonsmooth and nonconvex constrained global optimization problems. The properties of the smoothed penalty function are derived. Convergence to an
ε
-global minimizer is proved. At each iteration
k
, the framework requires the
ε
(
k
)
-global minimizer of a subproblem, where
ε
(
k
)
→
ε
. We show that the subproblem may be solved by well-known stochastic metaheuristics, as well as by the artificial fish swarm (AFS) algorithm. In the limit, the AFS algorithm convergence to an
ε
(
k
)
-global minimum of the real-valued smoothed penalty function is guaranteed with probability one, using the limiting behavior of Markov chains. In this context, we show that the transition probability of the Markov chain produced by the AFS algorithm, when generating a population where the best fitness is in the
ε
(
k
)
-neighborhood of the global minimum, is one when this property holds in the current population, and is strictly bounded from zero when the property does not hold. Preliminary numerical experiments show that the presented penalty algorithm based on the coercive smoothed penalty gives very competitive results when compared with other penalty-based methods.</description><subject>Algorithms</subject><subject>Coercivity</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Fitness</subject><subject>Global optimization</subject><subject>Iterative methods</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear programming</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Penalty function</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9giMbucv-JkYKgqvqRKXWC2nMRJXSVxsN2h_HpchYEF3XC60_vePXoRuiewIgDyMRAoygIDkRgEcEwv0IIIyTAtSX6JFlBSgQUAuUY3IRwAoCwEXaCn3ZjpLAzOxb1pssmMuo8nXOmQJt13ztu4H7LW-azrXaX7zE3RDvZbR-vGW3TV6j6Yu9--RJ8vzx-bN7zdvb5v1ltcc8oiLplmDaWilblmnArBE1rNNFCh86ZhpCJ5IRkTUjTa8DaHkrC055U0UhaULdHDfHfy7utoQlQHd_QJNShSCgZ5yXORVKtZ1eneKDu2Lnpdp2rMYGs3mtam_VqSgqd_nCcDmQ21dyF406rJ20H7kyKgzrGqOVaVYlXnWNUZhc6ekLRjZ_wflH9NP6R3eCo</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Rocha, Ana Maria A. C.</creator><creator>Costa, M. Fernanda P.</creator><creator>Fernandes, Edite M. G. P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20171101</creationdate><title>On a smoothed penalty-based algorithm for global optimization</title><author>Rocha, Ana Maria A. C. ; Costa, M. Fernanda P. ; Fernandes, Edite M. G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-93a3d225f76a342554157c3a025a6dd31b168733575dae4f60913dd34b7e77823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Coercivity</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Fitness</topic><topic>Global optimization</topic><topic>Iterative methods</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear programming</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Penalty function</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha, Ana Maria A. C.</creatorcontrib><creatorcontrib>Costa, M. Fernanda P.</creatorcontrib><creatorcontrib>Fernandes, Edite M. G. P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha, Ana Maria A. C.</au><au>Costa, M. Fernanda P.</au><au>Fernandes, Edite M. G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a smoothed penalty-based algorithm for global optimization</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>69</volume><issue>3</issue><spage>561</spage><epage>585</epage><pages>561-585</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>This paper presents a coercive smoothed penalty framework for nonsmooth and nonconvex constrained global optimization problems. The properties of the smoothed penalty function are derived. Convergence to an
ε
-global minimizer is proved. At each iteration
k
, the framework requires the
ε
(
k
)
-global minimizer of a subproblem, where
ε
(
k
)
→
ε
. We show that the subproblem may be solved by well-known stochastic metaheuristics, as well as by the artificial fish swarm (AFS) algorithm. In the limit, the AFS algorithm convergence to an
ε
(
k
)
-global minimum of the real-valued smoothed penalty function is guaranteed with probability one, using the limiting behavior of Markov chains. In this context, we show that the transition probability of the Markov chain produced by the AFS algorithm, when generating a population where the best fitness is in the
ε
(
k
)
-neighborhood of the global minimum, is one when this property holds in the current population, and is strictly bounded from zero when the property does not hold. Preliminary numerical experiments show that the presented penalty algorithm based on the coercive smoothed penalty gives very competitive results when compared with other penalty-based methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-017-0504-2</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2017-11, Vol.69 (3), p.561-585 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_1953069465 |
source | ABI/INFORM Global; Springer Link |
subjects | Algorithms Coercivity Computer Science Convergence Fitness Global optimization Iterative methods Markov chains Markov processes Mathematics Mathematics and Statistics Nonlinear programming Operations Research/Decision Theory Optimization Penalty function Real Functions |
title | On a smoothed penalty-based algorithm for global optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20smoothed%20penalty-based%20algorithm%20for%20global%20optimization&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Rocha,%20Ana%20Maria%20A.%20C.&rft.date=2017-11-01&rft.volume=69&rft.issue=3&rft.spage=561&rft.epage=585&rft.pages=561-585&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-017-0504-2&rft_dat=%3Cgale_proqu%3EA718416844%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-93a3d225f76a342554157c3a025a6dd31b168733575dae4f60913dd34b7e77823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1953069465&rft_id=info:pmid/&rft_galeid=A718416844&rfr_iscdi=true |