Loading…

Effect of the radius on the resonance properties of carbon nanotube dipole antennas

The resonance characteristics of dipole antennas based on armchair carbon nanotube are numerically investigated. The analysis takes into account the interaction of electrons with acoustic phonons which leads to the dependence of the electron relaxation time on the radius of the nanotube. The input i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of communications technology & electronics 2017-10, Vol.62 (10), p.1172-1181
Main Authors: Medina-Guerra, E, Salazar, Angel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The resonance characteristics of dipole antennas based on armchair carbon nanotube are numerically investigated. The analysis takes into account the interaction of electrons with acoustic phonons which leads to the dependence of the electron relaxation time on the radius of the nanotube. The input impedance of the nanoantena as a function of the frequency of an incident electromagnetic field in the GHz range is obtained by the numerical solution of the Hallén’s integral equation. The dynamic quantum mechanical conductivity of armchair carbon nanotubes is used including the explicit dependence of the relaxation frequency on the radius. In this way, it is adequately described the resonant activity of the nanoantenna depending on the radius and length of the carbon nanotube. Current distributions are presented.
ISSN:1064-2269
1555-6557
DOI:10.1134/S1064226917100096