Loading…
Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy
Contact-induced stresses during reciprocating movement may lead to surface/subsurface damage. Sintering processes may be used to produce advanced materials with improved wear and friction behavior, but the volume fraction of pores may compromise structural integrity under high loads or fatigue condi...
Saved in:
Published in: | Tribology international 2017-09, Vol.113, p.443-447 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3 |
container_end_page | 447 |
container_issue | |
container_start_page | 443 |
container_title | Tribology international |
container_volume | 113 |
creator | Fukumasu, N.K. Boidi, G. Seriacopi, V. Machado, G.A.A. Souza, R.M. Machado, I.F. |
description | Contact-induced stresses during reciprocating movement may lead to surface/subsurface damage. Sintering processes may be used to produce advanced materials with improved wear and friction behavior, but the volume fraction of pores may compromise structural integrity under high loads or fatigue conditions. In this work, the Finite Element Method (FEM) is applied to analyze contact-induced stress distributions produced by surface and inner pores on boundary lubrication condition during reciprocating tests. Material microstructure and mechanical properties are based on sintered FeCMo produced by Spark Plasma Sintering (SPS) process. Results indicate different behavior of surface pores with the increase of contact pressure. It was also observed that pores close to the surface promote a shift of high stress towards the surface, which may improve pitting resistance.
•Finite Element Method applied to analyze a porous material subjected to a reciprocating test.•Real pore morphology and distribution included in the numerical domain.•Surface pore dynamic behavior is dependent on contact pressure.•Pores may be designed to improve surface loading capacity and pitting resistance. |
doi_str_mv | 10.1016/j.triboint.2016.12.025 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1953084885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X16304947</els_id><sourcerecordid>1953084885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxUVJoJs_XyEIerYrWbIt31qWpg0syWUPuYmRNFq0eO2tJBf221dmm3NPwzDvPd78CHnirOaMd1-PdY7BzGHKdVP2mjc1a9pPZMNVP1SN7OQN2TDBeNX1w_tncpfSkTHWy6HfkOl1OWEMFkYKE4yXhInOnqYcMSUaJrdYdNTBCQ5I3RLDdKBAI9pwjrOFvO7jYtaEXIQZU179Hu1ppumcaCq9MJYTjON8eSC3HsaEj__mPdk__9hvf1W7t58v2--7ygrJcmWE88IrZGCYB--9NR30UvXoJOODAdkraDslBxTKOwOiM4Yp6LwXzhlxT75cY0vJ30vppI_zEst_SfOhFUxJpdqi6q4qG-eUInp9juEE8aI50ytafdQfaPWKVvNGF7TF-O1qxPLCn4BRJxtwKqRCIZO1m8P_Iv4C6OKJww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953084885</pqid></control><display><type>article</type><title>Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy</title><source>ScienceDirect Journals</source><creator>Fukumasu, N.K. ; Boidi, G. ; Seriacopi, V. ; Machado, G.A.A. ; Souza, R.M. ; Machado, I.F.</creator><creatorcontrib>Fukumasu, N.K. ; Boidi, G. ; Seriacopi, V. ; Machado, G.A.A. ; Souza, R.M. ; Machado, I.F.</creatorcontrib><description>Contact-induced stresses during reciprocating movement may lead to surface/subsurface damage. Sintering processes may be used to produce advanced materials with improved wear and friction behavior, but the volume fraction of pores may compromise structural integrity under high loads or fatigue conditions. In this work, the Finite Element Method (FEM) is applied to analyze contact-induced stress distributions produced by surface and inner pores on boundary lubrication condition during reciprocating tests. Material microstructure and mechanical properties are based on sintered FeCMo produced by Spark Plasma Sintering (SPS) process. Results indicate different behavior of surface pores with the increase of contact pressure. It was also observed that pores close to the surface promote a shift of high stress towards the surface, which may improve pitting resistance.
•Finite Element Method applied to analyze a porous material subjected to a reciprocating test.•Real pore morphology and distribution included in the numerical domain.•Surface pore dynamic behavior is dependent on contact pressure.•Pores may be designed to improve surface loading capacity and pitting resistance.</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2016.12.025</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alloys ; Boundary lubrication ; Concentration (composition) ; Contact fatigue ; Contact pressure ; Contact stresses ; Corrosion resistance ; Finite element analysis ; Finite Element Method ; Lubricants & lubrication ; Lubrication ; Mechanical properties ; Microstructure ; Numerical analysis ; Pitting (corrosion) ; Pitting (wear) ; Pores ; Porosity ; Reciprocating ; Sintered materials ; Sintering ; Spark plasma sintering ; Structural integrity ; Ultrasonic testing ; Wear</subject><ispartof>Tribology international, 2017-09, Vol.113, p.443-447</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3</citedby><cites>FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fukumasu, N.K.</creatorcontrib><creatorcontrib>Boidi, G.</creatorcontrib><creatorcontrib>Seriacopi, V.</creatorcontrib><creatorcontrib>Machado, G.A.A.</creatorcontrib><creatorcontrib>Souza, R.M.</creatorcontrib><creatorcontrib>Machado, I.F.</creatorcontrib><title>Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy</title><title>Tribology international</title><description>Contact-induced stresses during reciprocating movement may lead to surface/subsurface damage. Sintering processes may be used to produce advanced materials with improved wear and friction behavior, but the volume fraction of pores may compromise structural integrity under high loads or fatigue conditions. In this work, the Finite Element Method (FEM) is applied to analyze contact-induced stress distributions produced by surface and inner pores on boundary lubrication condition during reciprocating tests. Material microstructure and mechanical properties are based on sintered FeCMo produced by Spark Plasma Sintering (SPS) process. Results indicate different behavior of surface pores with the increase of contact pressure. It was also observed that pores close to the surface promote a shift of high stress towards the surface, which may improve pitting resistance.
•Finite Element Method applied to analyze a porous material subjected to a reciprocating test.•Real pore morphology and distribution included in the numerical domain.•Surface pore dynamic behavior is dependent on contact pressure.•Pores may be designed to improve surface loading capacity and pitting resistance.</description><subject>Alloys</subject><subject>Boundary lubrication</subject><subject>Concentration (composition)</subject><subject>Contact fatigue</subject><subject>Contact pressure</subject><subject>Contact stresses</subject><subject>Corrosion resistance</subject><subject>Finite element analysis</subject><subject>Finite Element Method</subject><subject>Lubricants & lubrication</subject><subject>Lubrication</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Numerical analysis</subject><subject>Pitting (corrosion)</subject><subject>Pitting (wear)</subject><subject>Pores</subject><subject>Porosity</subject><subject>Reciprocating</subject><subject>Sintered materials</subject><subject>Sintering</subject><subject>Spark plasma sintering</subject><subject>Structural integrity</subject><subject>Ultrasonic testing</subject><subject>Wear</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAQxUVJoJs_XyEIerYrWbIt31qWpg0syWUPuYmRNFq0eO2tJBf221dmm3NPwzDvPd78CHnirOaMd1-PdY7BzGHKdVP2mjc1a9pPZMNVP1SN7OQN2TDBeNX1w_tncpfSkTHWy6HfkOl1OWEMFkYKE4yXhInOnqYcMSUaJrdYdNTBCQ5I3RLDdKBAI9pwjrOFvO7jYtaEXIQZU179Hu1ppumcaCq9MJYTjON8eSC3HsaEj__mPdk__9hvf1W7t58v2--7ygrJcmWE88IrZGCYB--9NR30UvXoJOODAdkraDslBxTKOwOiM4Yp6LwXzhlxT75cY0vJ30vppI_zEst_SfOhFUxJpdqi6q4qG-eUInp9juEE8aI50ytafdQfaPWKVvNGF7TF-O1qxPLCn4BRJxtwKqRCIZO1m8P_Iv4C6OKJww</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Fukumasu, N.K.</creator><creator>Boidi, G.</creator><creator>Seriacopi, V.</creator><creator>Machado, G.A.A.</creator><creator>Souza, R.M.</creator><creator>Machado, I.F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201709</creationdate><title>Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy</title><author>Fukumasu, N.K. ; Boidi, G. ; Seriacopi, V. ; Machado, G.A.A. ; Souza, R.M. ; Machado, I.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Boundary lubrication</topic><topic>Concentration (composition)</topic><topic>Contact fatigue</topic><topic>Contact pressure</topic><topic>Contact stresses</topic><topic>Corrosion resistance</topic><topic>Finite element analysis</topic><topic>Finite Element Method</topic><topic>Lubricants & lubrication</topic><topic>Lubrication</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Numerical analysis</topic><topic>Pitting (corrosion)</topic><topic>Pitting (wear)</topic><topic>Pores</topic><topic>Porosity</topic><topic>Reciprocating</topic><topic>Sintered materials</topic><topic>Sintering</topic><topic>Spark plasma sintering</topic><topic>Structural integrity</topic><topic>Ultrasonic testing</topic><topic>Wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukumasu, N.K.</creatorcontrib><creatorcontrib>Boidi, G.</creatorcontrib><creatorcontrib>Seriacopi, V.</creatorcontrib><creatorcontrib>Machado, G.A.A.</creatorcontrib><creatorcontrib>Souza, R.M.</creatorcontrib><creatorcontrib>Machado, I.F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukumasu, N.K.</au><au>Boidi, G.</au><au>Seriacopi, V.</au><au>Machado, G.A.A.</au><au>Souza, R.M.</au><au>Machado, I.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy</atitle><jtitle>Tribology international</jtitle><date>2017-09</date><risdate>2017</risdate><volume>113</volume><spage>443</spage><epage>447</epage><pages>443-447</pages><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>Contact-induced stresses during reciprocating movement may lead to surface/subsurface damage. Sintering processes may be used to produce advanced materials with improved wear and friction behavior, but the volume fraction of pores may compromise structural integrity under high loads or fatigue conditions. In this work, the Finite Element Method (FEM) is applied to analyze contact-induced stress distributions produced by surface and inner pores on boundary lubrication condition during reciprocating tests. Material microstructure and mechanical properties are based on sintered FeCMo produced by Spark Plasma Sintering (SPS) process. Results indicate different behavior of surface pores with the increase of contact pressure. It was also observed that pores close to the surface promote a shift of high stress towards the surface, which may improve pitting resistance.
•Finite Element Method applied to analyze a porous material subjected to a reciprocating test.•Real pore morphology and distribution included in the numerical domain.•Surface pore dynamic behavior is dependent on contact pressure.•Pores may be designed to improve surface loading capacity and pitting resistance.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2016.12.025</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-679X |
ispartof | Tribology international, 2017-09, Vol.113, p.443-447 |
issn | 0301-679X 1879-2464 |
language | eng |
recordid | cdi_proquest_journals_1953084885 |
source | ScienceDirect Journals |
subjects | Alloys Boundary lubrication Concentration (composition) Contact fatigue Contact pressure Contact stresses Corrosion resistance Finite element analysis Finite Element Method Lubricants & lubrication Lubrication Mechanical properties Microstructure Numerical analysis Pitting (corrosion) Pitting (wear) Pores Porosity Reciprocating Sintered materials Sintering Spark plasma sintering Structural integrity Ultrasonic testing Wear |
title | Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analyses%20of%20stress%20induced%20damage%20during%20a%20reciprocating%20lubricated%20test%20of%20fecmo%20sps%20sintered%20alloy&rft.jtitle=Tribology%20international&rft.au=Fukumasu,%20N.K.&rft.date=2017-09&rft.volume=113&rft.spage=443&rft.epage=447&rft.pages=443-447&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2016.12.025&rft_dat=%3Cproquest_cross%3E1953084885%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1953084885&rft_id=info:pmid/&rfr_iscdi=true |