Loading…

Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy

Contact-induced stresses during reciprocating movement may lead to surface/subsurface damage. Sintering processes may be used to produce advanced materials with improved wear and friction behavior, but the volume fraction of pores may compromise structural integrity under high loads or fatigue condi...

Full description

Saved in:
Bibliographic Details
Published in:Tribology international 2017-09, Vol.113, p.443-447
Main Authors: Fukumasu, N.K., Boidi, G., Seriacopi, V., Machado, G.A.A., Souza, R.M., Machado, I.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3
cites cdi_FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3
container_end_page 447
container_issue
container_start_page 443
container_title Tribology international
container_volume 113
creator Fukumasu, N.K.
Boidi, G.
Seriacopi, V.
Machado, G.A.A.
Souza, R.M.
Machado, I.F.
description Contact-induced stresses during reciprocating movement may lead to surface/subsurface damage. Sintering processes may be used to produce advanced materials with improved wear and friction behavior, but the volume fraction of pores may compromise structural integrity under high loads or fatigue conditions. In this work, the Finite Element Method (FEM) is applied to analyze contact-induced stress distributions produced by surface and inner pores on boundary lubrication condition during reciprocating tests. Material microstructure and mechanical properties are based on sintered FeCMo produced by Spark Plasma Sintering (SPS) process. Results indicate different behavior of surface pores with the increase of contact pressure. It was also observed that pores close to the surface promote a shift of high stress towards the surface, which may improve pitting resistance. •Finite Element Method applied to analyze a porous material subjected to a reciprocating test.•Real pore morphology and distribution included in the numerical domain.•Surface pore dynamic behavior is dependent on contact pressure.•Pores may be designed to improve surface loading capacity and pitting resistance.
doi_str_mv 10.1016/j.triboint.2016.12.025
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1953084885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X16304947</els_id><sourcerecordid>1953084885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxUVJoJs_XyEIerYrWbIt31qWpg0syWUPuYmRNFq0eO2tJBf221dmm3NPwzDvPd78CHnirOaMd1-PdY7BzGHKdVP2mjc1a9pPZMNVP1SN7OQN2TDBeNX1w_tncpfSkTHWy6HfkOl1OWEMFkYKE4yXhInOnqYcMSUaJrdYdNTBCQ5I3RLDdKBAI9pwjrOFvO7jYtaEXIQZU179Hu1ppumcaCq9MJYTjON8eSC3HsaEj__mPdk__9hvf1W7t58v2--7ygrJcmWE88IrZGCYB--9NR30UvXoJOODAdkraDslBxTKOwOiM4Yp6LwXzhlxT75cY0vJ30vppI_zEst_SfOhFUxJpdqi6q4qG-eUInp9juEE8aI50ytafdQfaPWKVvNGF7TF-O1qxPLCn4BRJxtwKqRCIZO1m8P_Iv4C6OKJww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953084885</pqid></control><display><type>article</type><title>Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy</title><source>ScienceDirect Journals</source><creator>Fukumasu, N.K. ; Boidi, G. ; Seriacopi, V. ; Machado, G.A.A. ; Souza, R.M. ; Machado, I.F.</creator><creatorcontrib>Fukumasu, N.K. ; Boidi, G. ; Seriacopi, V. ; Machado, G.A.A. ; Souza, R.M. ; Machado, I.F.</creatorcontrib><description>Contact-induced stresses during reciprocating movement may lead to surface/subsurface damage. Sintering processes may be used to produce advanced materials with improved wear and friction behavior, but the volume fraction of pores may compromise structural integrity under high loads or fatigue conditions. In this work, the Finite Element Method (FEM) is applied to analyze contact-induced stress distributions produced by surface and inner pores on boundary lubrication condition during reciprocating tests. Material microstructure and mechanical properties are based on sintered FeCMo produced by Spark Plasma Sintering (SPS) process. Results indicate different behavior of surface pores with the increase of contact pressure. It was also observed that pores close to the surface promote a shift of high stress towards the surface, which may improve pitting resistance. •Finite Element Method applied to analyze a porous material subjected to a reciprocating test.•Real pore morphology and distribution included in the numerical domain.•Surface pore dynamic behavior is dependent on contact pressure.•Pores may be designed to improve surface loading capacity and pitting resistance.</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2016.12.025</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alloys ; Boundary lubrication ; Concentration (composition) ; Contact fatigue ; Contact pressure ; Contact stresses ; Corrosion resistance ; Finite element analysis ; Finite Element Method ; Lubricants &amp; lubrication ; Lubrication ; Mechanical properties ; Microstructure ; Numerical analysis ; Pitting (corrosion) ; Pitting (wear) ; Pores ; Porosity ; Reciprocating ; Sintered materials ; Sintering ; Spark plasma sintering ; Structural integrity ; Ultrasonic testing ; Wear</subject><ispartof>Tribology international, 2017-09, Vol.113, p.443-447</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3</citedby><cites>FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fukumasu, N.K.</creatorcontrib><creatorcontrib>Boidi, G.</creatorcontrib><creatorcontrib>Seriacopi, V.</creatorcontrib><creatorcontrib>Machado, G.A.A.</creatorcontrib><creatorcontrib>Souza, R.M.</creatorcontrib><creatorcontrib>Machado, I.F.</creatorcontrib><title>Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy</title><title>Tribology international</title><description>Contact-induced stresses during reciprocating movement may lead to surface/subsurface damage. Sintering processes may be used to produce advanced materials with improved wear and friction behavior, but the volume fraction of pores may compromise structural integrity under high loads or fatigue conditions. In this work, the Finite Element Method (FEM) is applied to analyze contact-induced stress distributions produced by surface and inner pores on boundary lubrication condition during reciprocating tests. Material microstructure and mechanical properties are based on sintered FeCMo produced by Spark Plasma Sintering (SPS) process. Results indicate different behavior of surface pores with the increase of contact pressure. It was also observed that pores close to the surface promote a shift of high stress towards the surface, which may improve pitting resistance. •Finite Element Method applied to analyze a porous material subjected to a reciprocating test.•Real pore morphology and distribution included in the numerical domain.•Surface pore dynamic behavior is dependent on contact pressure.•Pores may be designed to improve surface loading capacity and pitting resistance.</description><subject>Alloys</subject><subject>Boundary lubrication</subject><subject>Concentration (composition)</subject><subject>Contact fatigue</subject><subject>Contact pressure</subject><subject>Contact stresses</subject><subject>Corrosion resistance</subject><subject>Finite element analysis</subject><subject>Finite Element Method</subject><subject>Lubricants &amp; lubrication</subject><subject>Lubrication</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Numerical analysis</subject><subject>Pitting (corrosion)</subject><subject>Pitting (wear)</subject><subject>Pores</subject><subject>Porosity</subject><subject>Reciprocating</subject><subject>Sintered materials</subject><subject>Sintering</subject><subject>Spark plasma sintering</subject><subject>Structural integrity</subject><subject>Ultrasonic testing</subject><subject>Wear</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAQxUVJoJs_XyEIerYrWbIt31qWpg0syWUPuYmRNFq0eO2tJBf221dmm3NPwzDvPd78CHnirOaMd1-PdY7BzGHKdVP2mjc1a9pPZMNVP1SN7OQN2TDBeNX1w_tncpfSkTHWy6HfkOl1OWEMFkYKE4yXhInOnqYcMSUaJrdYdNTBCQ5I3RLDdKBAI9pwjrOFvO7jYtaEXIQZU179Hu1ppumcaCq9MJYTjON8eSC3HsaEj__mPdk__9hvf1W7t58v2--7ygrJcmWE88IrZGCYB--9NR30UvXoJOODAdkraDslBxTKOwOiM4Yp6LwXzhlxT75cY0vJ30vppI_zEst_SfOhFUxJpdqi6q4qG-eUInp9juEE8aI50ytafdQfaPWKVvNGF7TF-O1qxPLCn4BRJxtwKqRCIZO1m8P_Iv4C6OKJww</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Fukumasu, N.K.</creator><creator>Boidi, G.</creator><creator>Seriacopi, V.</creator><creator>Machado, G.A.A.</creator><creator>Souza, R.M.</creator><creator>Machado, I.F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201709</creationdate><title>Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy</title><author>Fukumasu, N.K. ; Boidi, G. ; Seriacopi, V. ; Machado, G.A.A. ; Souza, R.M. ; Machado, I.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Boundary lubrication</topic><topic>Concentration (composition)</topic><topic>Contact fatigue</topic><topic>Contact pressure</topic><topic>Contact stresses</topic><topic>Corrosion resistance</topic><topic>Finite element analysis</topic><topic>Finite Element Method</topic><topic>Lubricants &amp; lubrication</topic><topic>Lubrication</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Numerical analysis</topic><topic>Pitting (corrosion)</topic><topic>Pitting (wear)</topic><topic>Pores</topic><topic>Porosity</topic><topic>Reciprocating</topic><topic>Sintered materials</topic><topic>Sintering</topic><topic>Spark plasma sintering</topic><topic>Structural integrity</topic><topic>Ultrasonic testing</topic><topic>Wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukumasu, N.K.</creatorcontrib><creatorcontrib>Boidi, G.</creatorcontrib><creatorcontrib>Seriacopi, V.</creatorcontrib><creatorcontrib>Machado, G.A.A.</creatorcontrib><creatorcontrib>Souza, R.M.</creatorcontrib><creatorcontrib>Machado, I.F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukumasu, N.K.</au><au>Boidi, G.</au><au>Seriacopi, V.</au><au>Machado, G.A.A.</au><au>Souza, R.M.</au><au>Machado, I.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy</atitle><jtitle>Tribology international</jtitle><date>2017-09</date><risdate>2017</risdate><volume>113</volume><spage>443</spage><epage>447</epage><pages>443-447</pages><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>Contact-induced stresses during reciprocating movement may lead to surface/subsurface damage. Sintering processes may be used to produce advanced materials with improved wear and friction behavior, but the volume fraction of pores may compromise structural integrity under high loads or fatigue conditions. In this work, the Finite Element Method (FEM) is applied to analyze contact-induced stress distributions produced by surface and inner pores on boundary lubrication condition during reciprocating tests. Material microstructure and mechanical properties are based on sintered FeCMo produced by Spark Plasma Sintering (SPS) process. Results indicate different behavior of surface pores with the increase of contact pressure. It was also observed that pores close to the surface promote a shift of high stress towards the surface, which may improve pitting resistance. •Finite Element Method applied to analyze a porous material subjected to a reciprocating test.•Real pore morphology and distribution included in the numerical domain.•Surface pore dynamic behavior is dependent on contact pressure.•Pores may be designed to improve surface loading capacity and pitting resistance.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2016.12.025</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-679X
ispartof Tribology international, 2017-09, Vol.113, p.443-447
issn 0301-679X
1879-2464
language eng
recordid cdi_proquest_journals_1953084885
source ScienceDirect Journals
subjects Alloys
Boundary lubrication
Concentration (composition)
Contact fatigue
Contact pressure
Contact stresses
Corrosion resistance
Finite element analysis
Finite Element Method
Lubricants & lubrication
Lubrication
Mechanical properties
Microstructure
Numerical analysis
Pitting (corrosion)
Pitting (wear)
Pores
Porosity
Reciprocating
Sintered materials
Sintering
Spark plasma sintering
Structural integrity
Ultrasonic testing
Wear
title Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analyses%20of%20stress%20induced%20damage%20during%20a%20reciprocating%20lubricated%20test%20of%20fecmo%20sps%20sintered%20alloy&rft.jtitle=Tribology%20international&rft.au=Fukumasu,%20N.K.&rft.date=2017-09&rft.volume=113&rft.spage=443&rft.epage=447&rft.pages=443-447&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2016.12.025&rft_dat=%3Cproquest_cross%3E1953084885%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-b3df3f8e0ab0fafffcb6a7487ed4019ba478a56849e38fdba36bb08a6ff3ddb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1953084885&rft_id=info:pmid/&rfr_iscdi=true