Loading…

Molecular Evolution of Grass Stomata

Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in...

Full description

Saved in:
Bibliographic Details
Published in:Trends in plant science 2017-02, Vol.22 (2), p.124-139
Main Authors: Chen, Zhong-Hua, Chen, Guang, Dai, Fei, Wang, Yizhou, Hills, Adrian, Ruan, Yong-Ling, Zhang, Guoping, Franks, Peter J., Nevo, Eviatar, Blatt, Michael R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3
cites cdi_FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3
container_end_page 139
container_issue 2
container_start_page 124
container_title Trends in plant science
container_volume 22
creator Chen, Zhong-Hua
Chen, Guang
Dai, Fei
Wang, Yizhou
Hills, Adrian
Ruan, Yong-Ling
Zhang, Guoping
Franks, Peter J.
Nevo, Eviatar
Blatt, Michael R.
description Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties. Evolutionary trajectories of land plants have led to structurally complex and functionally active stomata for terrestrial life. A likely scenario for the emergence of active stomatal control is ‘evolutionary capture’ of key stomatal development, membrane transport, and abscisic acid signaling proteins in the divergence from liverworts to mosses. The unique morphology, development, and molecular regulation of grass stomata enable their rapid environmental response. Evolution of the molecular mechanism behind stomatal development and membrane transport has clearly drawn on conserved and sophisticated signaling networks common to stomata of all vascular plants and some mosses. Understanding this evolutionary trend will inform predictive modeling and functional manipulation of plant productivity and water use at all scales, and will benefit future efforts towards food security and ecological diversity.
doi_str_mv 10.1016/j.tplants.2016.09.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1953095693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1360138516301595</els_id><sourcerecordid>1953095693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3</originalsourceid><addsrcrecordid>eNqFkFtLwzAUgIMobk5_gjLQ19aT5tY8iYw5hYkP6nNI0wRaumYm7cB_b8amrz6dc-A7tw-haww5Bszv23zYdrofYl6kMgeZA7ATNMWlKDNKRHGacsIhw6RkE3QRYwsAApf8HE0KIQSXBE_R3avvrBk7HebLne_GofH93Lv5KugY5--D3-hBX6Izp7tor45xhj6flh-L52z9tnpZPK4zQyQZMk0qUdQV0MJoRjE2nELJKAcquKUCO8GkK7mgpnKMOwpGlompiJXCUV6TGbo9zN0G_zXaOKjWj6FPKxWWjIBk6ehEsQNlgo8xWKe2odno8K0wqL0b1aqjG7V3o0Cq5Cb13Rynj9XG1n9dvzIS8HAAbPpx19igomlsb2zdBGsGVfvmnxU_JVx1sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953095693</pqid></control><display><type>article</type><title>Molecular Evolution of Grass Stomata</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Chen, Zhong-Hua ; Chen, Guang ; Dai, Fei ; Wang, Yizhou ; Hills, Adrian ; Ruan, Yong-Ling ; Zhang, Guoping ; Franks, Peter J. ; Nevo, Eviatar ; Blatt, Michael R.</creator><creatorcontrib>Chen, Zhong-Hua ; Chen, Guang ; Dai, Fei ; Wang, Yizhou ; Hills, Adrian ; Ruan, Yong-Ling ; Zhang, Guoping ; Franks, Peter J. ; Nevo, Eviatar ; Blatt, Michael R.</creatorcontrib><description>Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties. Evolutionary trajectories of land plants have led to structurally complex and functionally active stomata for terrestrial life. A likely scenario for the emergence of active stomatal control is ‘evolutionary capture’ of key stomatal development, membrane transport, and abscisic acid signaling proteins in the divergence from liverworts to mosses. The unique morphology, development, and molecular regulation of grass stomata enable their rapid environmental response. Evolution of the molecular mechanism behind stomatal development and membrane transport has clearly drawn on conserved and sophisticated signaling networks common to stomata of all vascular plants and some mosses. Understanding this evolutionary trend will inform predictive modeling and functional manipulation of plant productivity and water use at all scales, and will benefit future efforts towards food security and ecological diversity.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2016.09.005</identifier><identifier>PMID: 27776931</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Active control ; Agricultural land ; Biological Evolution ; Changing environments ; comparative genomics ; Cretaceous ; Evolution ; Evolution, Molecular ; Grasses ; guard cell modeling ; Ion Transport - genetics ; Ion Transport - physiology ; ion transporters ; Land ; Maximization ; Molecular evolution ; Plant breeding ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Stomata - genetics ; Plant Stomata - metabolism ; Plant Stomata - physiology ; Poaceae - genetics ; Poaceae - metabolism ; Poaceae - physiology ; Productivity ; Stomata ; stomatal development ; stomatal evolution ; Turgor</subject><ispartof>Trends in plant science, 2017-02, Vol.22 (2), p.124-139</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Feb 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3</citedby><cites>FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27776931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><creatorcontrib>Dai, Fei</creatorcontrib><creatorcontrib>Wang, Yizhou</creatorcontrib><creatorcontrib>Hills, Adrian</creatorcontrib><creatorcontrib>Ruan, Yong-Ling</creatorcontrib><creatorcontrib>Zhang, Guoping</creatorcontrib><creatorcontrib>Franks, Peter J.</creatorcontrib><creatorcontrib>Nevo, Eviatar</creatorcontrib><creatorcontrib>Blatt, Michael R.</creatorcontrib><title>Molecular Evolution of Grass Stomata</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties. Evolutionary trajectories of land plants have led to structurally complex and functionally active stomata for terrestrial life. A likely scenario for the emergence of active stomatal control is ‘evolutionary capture’ of key stomatal development, membrane transport, and abscisic acid signaling proteins in the divergence from liverworts to mosses. The unique morphology, development, and molecular regulation of grass stomata enable their rapid environmental response. Evolution of the molecular mechanism behind stomatal development and membrane transport has clearly drawn on conserved and sophisticated signaling networks common to stomata of all vascular plants and some mosses. Understanding this evolutionary trend will inform predictive modeling and functional manipulation of plant productivity and water use at all scales, and will benefit future efforts towards food security and ecological diversity.</description><subject>Active control</subject><subject>Agricultural land</subject><subject>Biological Evolution</subject><subject>Changing environments</subject><subject>comparative genomics</subject><subject>Cretaceous</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Grasses</subject><subject>guard cell modeling</subject><subject>Ion Transport - genetics</subject><subject>Ion Transport - physiology</subject><subject>ion transporters</subject><subject>Land</subject><subject>Maximization</subject><subject>Molecular evolution</subject><subject>Plant breeding</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Stomata - genetics</subject><subject>Plant Stomata - metabolism</subject><subject>Plant Stomata - physiology</subject><subject>Poaceae - genetics</subject><subject>Poaceae - metabolism</subject><subject>Poaceae - physiology</subject><subject>Productivity</subject><subject>Stomata</subject><subject>stomatal development</subject><subject>stomatal evolution</subject><subject>Turgor</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLwzAUgIMobk5_gjLQ19aT5tY8iYw5hYkP6nNI0wRaumYm7cB_b8amrz6dc-A7tw-haww5Bszv23zYdrofYl6kMgeZA7ATNMWlKDNKRHGacsIhw6RkE3QRYwsAApf8HE0KIQSXBE_R3avvrBk7HebLne_GofH93Lv5KugY5--D3-hBX6Izp7tor45xhj6flh-L52z9tnpZPK4zQyQZMk0qUdQV0MJoRjE2nELJKAcquKUCO8GkK7mgpnKMOwpGlompiJXCUV6TGbo9zN0G_zXaOKjWj6FPKxWWjIBk6ehEsQNlgo8xWKe2odno8K0wqL0b1aqjG7V3o0Cq5Cb13Rynj9XG1n9dvzIS8HAAbPpx19igomlsb2zdBGsGVfvmnxU_JVx1sQ</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Chen, Zhong-Hua</creator><creator>Chen, Guang</creator><creator>Dai, Fei</creator><creator>Wang, Yizhou</creator><creator>Hills, Adrian</creator><creator>Ruan, Yong-Ling</creator><creator>Zhang, Guoping</creator><creator>Franks, Peter J.</creator><creator>Nevo, Eviatar</creator><creator>Blatt, Michael R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201702</creationdate><title>Molecular Evolution of Grass Stomata</title><author>Chen, Zhong-Hua ; Chen, Guang ; Dai, Fei ; Wang, Yizhou ; Hills, Adrian ; Ruan, Yong-Ling ; Zhang, Guoping ; Franks, Peter J. ; Nevo, Eviatar ; Blatt, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active control</topic><topic>Agricultural land</topic><topic>Biological Evolution</topic><topic>Changing environments</topic><topic>comparative genomics</topic><topic>Cretaceous</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Grasses</topic><topic>guard cell modeling</topic><topic>Ion Transport - genetics</topic><topic>Ion Transport - physiology</topic><topic>ion transporters</topic><topic>Land</topic><topic>Maximization</topic><topic>Molecular evolution</topic><topic>Plant breeding</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Stomata - genetics</topic><topic>Plant Stomata - metabolism</topic><topic>Plant Stomata - physiology</topic><topic>Poaceae - genetics</topic><topic>Poaceae - metabolism</topic><topic>Poaceae - physiology</topic><topic>Productivity</topic><topic>Stomata</topic><topic>stomatal development</topic><topic>stomatal evolution</topic><topic>Turgor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><creatorcontrib>Dai, Fei</creatorcontrib><creatorcontrib>Wang, Yizhou</creatorcontrib><creatorcontrib>Hills, Adrian</creatorcontrib><creatorcontrib>Ruan, Yong-Ling</creatorcontrib><creatorcontrib>Zhang, Guoping</creatorcontrib><creatorcontrib>Franks, Peter J.</creatorcontrib><creatorcontrib>Nevo, Eviatar</creatorcontrib><creatorcontrib>Blatt, Michael R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhong-Hua</au><au>Chen, Guang</au><au>Dai, Fei</au><au>Wang, Yizhou</au><au>Hills, Adrian</au><au>Ruan, Yong-Ling</au><au>Zhang, Guoping</au><au>Franks, Peter J.</au><au>Nevo, Eviatar</au><au>Blatt, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Evolution of Grass Stomata</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2017-02</date><risdate>2017</risdate><volume>22</volume><issue>2</issue><spage>124</spage><epage>139</epage><pages>124-139</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties. Evolutionary trajectories of land plants have led to structurally complex and functionally active stomata for terrestrial life. A likely scenario for the emergence of active stomatal control is ‘evolutionary capture’ of key stomatal development, membrane transport, and abscisic acid signaling proteins in the divergence from liverworts to mosses. The unique morphology, development, and molecular regulation of grass stomata enable their rapid environmental response. Evolution of the molecular mechanism behind stomatal development and membrane transport has clearly drawn on conserved and sophisticated signaling networks common to stomata of all vascular plants and some mosses. Understanding this evolutionary trend will inform predictive modeling and functional manipulation of plant productivity and water use at all scales, and will benefit future efforts towards food security and ecological diversity.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27776931</pmid><doi>10.1016/j.tplants.2016.09.005</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1360-1385
ispartof Trends in plant science, 2017-02, Vol.22 (2), p.124-139
issn 1360-1385
1878-4372
language eng
recordid cdi_proquest_journals_1953095693
source ScienceDirect Freedom Collection 2022-2024
subjects Active control
Agricultural land
Biological Evolution
Changing environments
comparative genomics
Cretaceous
Evolution
Evolution, Molecular
Grasses
guard cell modeling
Ion Transport - genetics
Ion Transport - physiology
ion transporters
Land
Maximization
Molecular evolution
Plant breeding
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Stomata - genetics
Plant Stomata - metabolism
Plant Stomata - physiology
Poaceae - genetics
Poaceae - metabolism
Poaceae - physiology
Productivity
Stomata
stomatal development
stomatal evolution
Turgor
title Molecular Evolution of Grass Stomata
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Evolution%20of%20Grass%20Stomata&rft.jtitle=Trends%20in%20plant%20science&rft.au=Chen,%20Zhong-Hua&rft.date=2017-02&rft.volume=22&rft.issue=2&rft.spage=124&rft.epage=139&rft.pages=124-139&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2016.09.005&rft_dat=%3Cproquest_cross%3E1953095693%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1953095693&rft_id=info:pmid/27776931&rfr_iscdi=true