Loading…
Molecular Evolution of Grass Stomata
Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in...
Saved in:
Published in: | Trends in plant science 2017-02, Vol.22 (2), p.124-139 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3 |
container_end_page | 139 |
container_issue | 2 |
container_start_page | 124 |
container_title | Trends in plant science |
container_volume | 22 |
creator | Chen, Zhong-Hua Chen, Guang Dai, Fei Wang, Yizhou Hills, Adrian Ruan, Yong-Ling Zhang, Guoping Franks, Peter J. Nevo, Eviatar Blatt, Michael R. |
description | Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties.
Evolutionary trajectories of land plants have led to structurally complex and functionally active stomata for terrestrial life. A likely scenario for the emergence of active stomatal control is ‘evolutionary capture’ of key stomatal development, membrane transport, and abscisic acid signaling proteins in the divergence from liverworts to mosses.
The unique morphology, development, and molecular regulation of grass stomata enable their rapid environmental response. Evolution of the molecular mechanism behind stomatal development and membrane transport has clearly drawn on conserved and sophisticated signaling networks common to stomata of all vascular plants and some mosses. Understanding this evolutionary trend will inform predictive modeling and functional manipulation of plant productivity and water use at all scales, and will benefit future efforts towards food security and ecological diversity. |
doi_str_mv | 10.1016/j.tplants.2016.09.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1953095693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1360138516301595</els_id><sourcerecordid>1953095693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3</originalsourceid><addsrcrecordid>eNqFkFtLwzAUgIMobk5_gjLQ19aT5tY8iYw5hYkP6nNI0wRaumYm7cB_b8amrz6dc-A7tw-haww5Bszv23zYdrofYl6kMgeZA7ATNMWlKDNKRHGacsIhw6RkE3QRYwsAApf8HE0KIQSXBE_R3avvrBk7HebLne_GofH93Lv5KugY5--D3-hBX6Izp7tor45xhj6flh-L52z9tnpZPK4zQyQZMk0qUdQV0MJoRjE2nELJKAcquKUCO8GkK7mgpnKMOwpGlompiJXCUV6TGbo9zN0G_zXaOKjWj6FPKxWWjIBk6ehEsQNlgo8xWKe2odno8K0wqL0b1aqjG7V3o0Cq5Cb13Rynj9XG1n9dvzIS8HAAbPpx19igomlsb2zdBGsGVfvmnxU_JVx1sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953095693</pqid></control><display><type>article</type><title>Molecular Evolution of Grass Stomata</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Chen, Zhong-Hua ; Chen, Guang ; Dai, Fei ; Wang, Yizhou ; Hills, Adrian ; Ruan, Yong-Ling ; Zhang, Guoping ; Franks, Peter J. ; Nevo, Eviatar ; Blatt, Michael R.</creator><creatorcontrib>Chen, Zhong-Hua ; Chen, Guang ; Dai, Fei ; Wang, Yizhou ; Hills, Adrian ; Ruan, Yong-Ling ; Zhang, Guoping ; Franks, Peter J. ; Nevo, Eviatar ; Blatt, Michael R.</creatorcontrib><description>Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties.
Evolutionary trajectories of land plants have led to structurally complex and functionally active stomata for terrestrial life. A likely scenario for the emergence of active stomatal control is ‘evolutionary capture’ of key stomatal development, membrane transport, and abscisic acid signaling proteins in the divergence from liverworts to mosses.
The unique morphology, development, and molecular regulation of grass stomata enable their rapid environmental response. Evolution of the molecular mechanism behind stomatal development and membrane transport has clearly drawn on conserved and sophisticated signaling networks common to stomata of all vascular plants and some mosses. Understanding this evolutionary trend will inform predictive modeling and functional manipulation of plant productivity and water use at all scales, and will benefit future efforts towards food security and ecological diversity.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2016.09.005</identifier><identifier>PMID: 27776931</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Active control ; Agricultural land ; Biological Evolution ; Changing environments ; comparative genomics ; Cretaceous ; Evolution ; Evolution, Molecular ; Grasses ; guard cell modeling ; Ion Transport - genetics ; Ion Transport - physiology ; ion transporters ; Land ; Maximization ; Molecular evolution ; Plant breeding ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Stomata - genetics ; Plant Stomata - metabolism ; Plant Stomata - physiology ; Poaceae - genetics ; Poaceae - metabolism ; Poaceae - physiology ; Productivity ; Stomata ; stomatal development ; stomatal evolution ; Turgor</subject><ispartof>Trends in plant science, 2017-02, Vol.22 (2), p.124-139</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Feb 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3</citedby><cites>FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27776931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><creatorcontrib>Dai, Fei</creatorcontrib><creatorcontrib>Wang, Yizhou</creatorcontrib><creatorcontrib>Hills, Adrian</creatorcontrib><creatorcontrib>Ruan, Yong-Ling</creatorcontrib><creatorcontrib>Zhang, Guoping</creatorcontrib><creatorcontrib>Franks, Peter J.</creatorcontrib><creatorcontrib>Nevo, Eviatar</creatorcontrib><creatorcontrib>Blatt, Michael R.</creatorcontrib><title>Molecular Evolution of Grass Stomata</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties.
Evolutionary trajectories of land plants have led to structurally complex and functionally active stomata for terrestrial life. A likely scenario for the emergence of active stomatal control is ‘evolutionary capture’ of key stomatal development, membrane transport, and abscisic acid signaling proteins in the divergence from liverworts to mosses.
The unique morphology, development, and molecular regulation of grass stomata enable their rapid environmental response. Evolution of the molecular mechanism behind stomatal development and membrane transport has clearly drawn on conserved and sophisticated signaling networks common to stomata of all vascular plants and some mosses. Understanding this evolutionary trend will inform predictive modeling and functional manipulation of plant productivity and water use at all scales, and will benefit future efforts towards food security and ecological diversity.</description><subject>Active control</subject><subject>Agricultural land</subject><subject>Biological Evolution</subject><subject>Changing environments</subject><subject>comparative genomics</subject><subject>Cretaceous</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Grasses</subject><subject>guard cell modeling</subject><subject>Ion Transport - genetics</subject><subject>Ion Transport - physiology</subject><subject>ion transporters</subject><subject>Land</subject><subject>Maximization</subject><subject>Molecular evolution</subject><subject>Plant breeding</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Stomata - genetics</subject><subject>Plant Stomata - metabolism</subject><subject>Plant Stomata - physiology</subject><subject>Poaceae - genetics</subject><subject>Poaceae - metabolism</subject><subject>Poaceae - physiology</subject><subject>Productivity</subject><subject>Stomata</subject><subject>stomatal development</subject><subject>stomatal evolution</subject><subject>Turgor</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLwzAUgIMobk5_gjLQ19aT5tY8iYw5hYkP6nNI0wRaumYm7cB_b8amrz6dc-A7tw-haww5Bszv23zYdrofYl6kMgeZA7ATNMWlKDNKRHGacsIhw6RkE3QRYwsAApf8HE0KIQSXBE_R3avvrBk7HebLne_GofH93Lv5KugY5--D3-hBX6Izp7tor45xhj6flh-L52z9tnpZPK4zQyQZMk0qUdQV0MJoRjE2nELJKAcquKUCO8GkK7mgpnKMOwpGlompiJXCUV6TGbo9zN0G_zXaOKjWj6FPKxWWjIBk6ehEsQNlgo8xWKe2odno8K0wqL0b1aqjG7V3o0Cq5Cb13Rynj9XG1n9dvzIS8HAAbPpx19igomlsb2zdBGsGVfvmnxU_JVx1sQ</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Chen, Zhong-Hua</creator><creator>Chen, Guang</creator><creator>Dai, Fei</creator><creator>Wang, Yizhou</creator><creator>Hills, Adrian</creator><creator>Ruan, Yong-Ling</creator><creator>Zhang, Guoping</creator><creator>Franks, Peter J.</creator><creator>Nevo, Eviatar</creator><creator>Blatt, Michael R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201702</creationdate><title>Molecular Evolution of Grass Stomata</title><author>Chen, Zhong-Hua ; Chen, Guang ; Dai, Fei ; Wang, Yizhou ; Hills, Adrian ; Ruan, Yong-Ling ; Zhang, Guoping ; Franks, Peter J. ; Nevo, Eviatar ; Blatt, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active control</topic><topic>Agricultural land</topic><topic>Biological Evolution</topic><topic>Changing environments</topic><topic>comparative genomics</topic><topic>Cretaceous</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Grasses</topic><topic>guard cell modeling</topic><topic>Ion Transport - genetics</topic><topic>Ion Transport - physiology</topic><topic>ion transporters</topic><topic>Land</topic><topic>Maximization</topic><topic>Molecular evolution</topic><topic>Plant breeding</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Stomata - genetics</topic><topic>Plant Stomata - metabolism</topic><topic>Plant Stomata - physiology</topic><topic>Poaceae - genetics</topic><topic>Poaceae - metabolism</topic><topic>Poaceae - physiology</topic><topic>Productivity</topic><topic>Stomata</topic><topic>stomatal development</topic><topic>stomatal evolution</topic><topic>Turgor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhong-Hua</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><creatorcontrib>Dai, Fei</creatorcontrib><creatorcontrib>Wang, Yizhou</creatorcontrib><creatorcontrib>Hills, Adrian</creatorcontrib><creatorcontrib>Ruan, Yong-Ling</creatorcontrib><creatorcontrib>Zhang, Guoping</creatorcontrib><creatorcontrib>Franks, Peter J.</creatorcontrib><creatorcontrib>Nevo, Eviatar</creatorcontrib><creatorcontrib>Blatt, Michael R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhong-Hua</au><au>Chen, Guang</au><au>Dai, Fei</au><au>Wang, Yizhou</au><au>Hills, Adrian</au><au>Ruan, Yong-Ling</au><au>Zhang, Guoping</au><au>Franks, Peter J.</au><au>Nevo, Eviatar</au><au>Blatt, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Evolution of Grass Stomata</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2017-02</date><risdate>2017</risdate><volume>22</volume><issue>2</issue><spage>124</spage><epage>139</epage><pages>124-139</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties.
Evolutionary trajectories of land plants have led to structurally complex and functionally active stomata for terrestrial life. A likely scenario for the emergence of active stomatal control is ‘evolutionary capture’ of key stomatal development, membrane transport, and abscisic acid signaling proteins in the divergence from liverworts to mosses.
The unique morphology, development, and molecular regulation of grass stomata enable their rapid environmental response. Evolution of the molecular mechanism behind stomatal development and membrane transport has clearly drawn on conserved and sophisticated signaling networks common to stomata of all vascular plants and some mosses. Understanding this evolutionary trend will inform predictive modeling and functional manipulation of plant productivity and water use at all scales, and will benefit future efforts towards food security and ecological diversity.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27776931</pmid><doi>10.1016/j.tplants.2016.09.005</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1360-1385 |
ispartof | Trends in plant science, 2017-02, Vol.22 (2), p.124-139 |
issn | 1360-1385 1878-4372 |
language | eng |
recordid | cdi_proquest_journals_1953095693 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Active control Agricultural land Biological Evolution Changing environments comparative genomics Cretaceous Evolution Evolution, Molecular Grasses guard cell modeling Ion Transport - genetics Ion Transport - physiology ion transporters Land Maximization Molecular evolution Plant breeding Plant Proteins - genetics Plant Proteins - metabolism Plant Stomata - genetics Plant Stomata - metabolism Plant Stomata - physiology Poaceae - genetics Poaceae - metabolism Poaceae - physiology Productivity Stomata stomatal development stomatal evolution Turgor |
title | Molecular Evolution of Grass Stomata |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Evolution%20of%20Grass%20Stomata&rft.jtitle=Trends%20in%20plant%20science&rft.au=Chen,%20Zhong-Hua&rft.date=2017-02&rft.volume=22&rft.issue=2&rft.spage=124&rft.epage=139&rft.pages=124-139&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2016.09.005&rft_dat=%3Cproquest_cross%3E1953095693%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-a3b72db042ca5411c64085460476e471f759f8674cbf56f40c98c64b3e97f46d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1953095693&rft_id=info:pmid/27776931&rfr_iscdi=true |