Loading…
Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction
We studied the dissociation of methane into adsorbed carbon and hydrogen atoms on various surfaces to gain insight into carbon coke formation on solid-oxide fuel cell anodes. Preferred adsorption sites and energies were calculated for CH x ( x = 0 , … , 3 ) and H on Ni and Cu (111) planar and (211)...
Saved in:
Published in: | Journal of catalysis 2007-04, Vol.247 (1), p.20-33 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-55f3a7b77ac44ae5ba2b76b3dd378b0a03463a05e8eb043829f3ce801131c3bf3 |
---|---|
cites | |
container_end_page | 33 |
container_issue | 1 |
container_start_page | 20 |
container_title | Journal of catalysis |
container_volume | 247 |
creator | Galea, Natasha M. Knapp, Daniel Ziegler, Tom |
description | We studied the dissociation of methane into adsorbed carbon and hydrogen atoms on various surfaces to gain insight into carbon coke formation on solid-oxide fuel cell anodes. Preferred adsorption sites and energies were calculated for
CH
x
(
x
=
0
,
…
,
3
) and H on Ni and Cu (111) planar and (211) stepped surfaces, on Cu
Ni and Cu
Co surface alloys, and on Ni(211) surfaces with step edge sites blocked by Au- and S-promoter atoms. Transition states and kinetic barriers were calculated on Cu(111) and Cu(211) and on the S
Ni(211) surface. Our results are in excellent agreement with existing experimental and theoretical studies, suggesting that copper anodes have very low activity and high resistance to coking, and that step-blocking on the nickel surface can increase the tolerance of nickel-based anodes to carbon coke formation. |
doi_str_mv | 10.1016/j.jcat.2006.12.021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195446521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002195170700005X</els_id><sourcerecordid>1249012211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-55f3a7b77ac44ae5ba2b76b3dd378b0a03463a05e8eb043829f3ce801131c3bf3</originalsourceid><addsrcrecordid>eNp9kN1qFTEUhYNU8LT6Al4FoZczzc9kfqQ3UrUtFLxQr0Mm2WkzTic1O1M8L-Bzm-kp9E4IBJJv7bXXIuQ9ZzVnvD2b6smaXAvG2pqLmgn-iuw4G1gl2qE5IjtWnqpB8e4NOUacGONcqX5H_n6GBUPeU78uNoe4mJnmO4hpTzGvLgDS6Ok95DuzAHUBMdpgNpCWY5bogBZnM-8xIw0LxTgHV8U_oXz4FWZqYZ7xI_2-3t4CbkKkPiZq4y-gCdz65PqWvPZmRnj3fJ-Qn1-__Li4qm6-XV5ffLqpbCNkrpTy0nRj1xnbNAbUaMTYtaN0Tnb9yAyTTSsNU9DDyBrZi8FLC30JK7mVo5cn5MNh7kOKv9eyj57imkpo1HxQTdMqwQskDpBNETGB1w8p3Ju015zprW496a1uvdWtudDsSXT6PNmgNbNPZrEBX5R9y_thkIU7P3BQYj4GSBptgMWCCwls1i6G_9n8A9W_mJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195446521</pqid></control><display><type>article</type><title>Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction</title><source>ScienceDirect Freedom Collection</source><creator>Galea, Natasha M. ; Knapp, Daniel ; Ziegler, Tom</creator><creatorcontrib>Galea, Natasha M. ; Knapp, Daniel ; Ziegler, Tom</creatorcontrib><description>We studied the dissociation of methane into adsorbed carbon and hydrogen atoms on various surfaces to gain insight into carbon coke formation on solid-oxide fuel cell anodes. Preferred adsorption sites and energies were calculated for
CH
x
(
x
=
0
,
…
,
3
) and H on Ni and Cu (111) planar and (211) stepped surfaces, on Cu
Ni and Cu
Co surface alloys, and on Ni(211) surfaces with step edge sites blocked by Au- and S-promoter atoms. Transition states and kinetic barriers were calculated on Cu(111) and Cu(211) and on the S
Ni(211) surface. Our results are in excellent agreement with existing experimental and theoretical studies, suggesting that copper anodes have very low activity and high resistance to coking, and that step-blocking on the nickel surface can increase the tolerance of nickel-based anodes to carbon coke formation.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2006.12.021</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Alloy catalysts ; Applied sciences ; Carbon adsorption ; Catalysis ; Chemistry ; Coke ; Coking ; Copper catalysts ; Density functional theory ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Methane ; Methane dissociation ; Nickel catalysts ; Nickel step-blocking ; Reaction kinetics ; Solid oxide fuel cells ; Surface physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of catalysis, 2007-04, Vol.247 (1), p.20-33</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright © 2007 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-55f3a7b77ac44ae5ba2b76b3dd378b0a03463a05e8eb043829f3ce801131c3bf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18618993$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Galea, Natasha M.</creatorcontrib><creatorcontrib>Knapp, Daniel</creatorcontrib><creatorcontrib>Ziegler, Tom</creatorcontrib><title>Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction</title><title>Journal of catalysis</title><description>We studied the dissociation of methane into adsorbed carbon and hydrogen atoms on various surfaces to gain insight into carbon coke formation on solid-oxide fuel cell anodes. Preferred adsorption sites and energies were calculated for
CH
x
(
x
=
0
,
…
,
3
) and H on Ni and Cu (111) planar and (211) stepped surfaces, on Cu
Ni and Cu
Co surface alloys, and on Ni(211) surfaces with step edge sites blocked by Au- and S-promoter atoms. Transition states and kinetic barriers were calculated on Cu(111) and Cu(211) and on the S
Ni(211) surface. Our results are in excellent agreement with existing experimental and theoretical studies, suggesting that copper anodes have very low activity and high resistance to coking, and that step-blocking on the nickel surface can increase the tolerance of nickel-based anodes to carbon coke formation.</description><subject>Alloy catalysts</subject><subject>Applied sciences</subject><subject>Carbon adsorption</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Coke</subject><subject>Coking</subject><subject>Copper catalysts</subject><subject>Density functional theory</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Methane</subject><subject>Methane dissociation</subject><subject>Nickel catalysts</subject><subject>Nickel step-blocking</subject><subject>Reaction kinetics</subject><subject>Solid oxide fuel cells</subject><subject>Surface physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kN1qFTEUhYNU8LT6Al4FoZczzc9kfqQ3UrUtFLxQr0Mm2WkzTic1O1M8L-Bzm-kp9E4IBJJv7bXXIuQ9ZzVnvD2b6smaXAvG2pqLmgn-iuw4G1gl2qE5IjtWnqpB8e4NOUacGONcqX5H_n6GBUPeU78uNoe4mJnmO4hpTzGvLgDS6Ok95DuzAHUBMdpgNpCWY5bogBZnM-8xIw0LxTgHV8U_oXz4FWZqYZ7xI_2-3t4CbkKkPiZq4y-gCdz65PqWvPZmRnj3fJ-Qn1-__Li4qm6-XV5ffLqpbCNkrpTy0nRj1xnbNAbUaMTYtaN0Tnb9yAyTTSsNU9DDyBrZi8FLC30JK7mVo5cn5MNh7kOKv9eyj57imkpo1HxQTdMqwQskDpBNETGB1w8p3Ju015zprW496a1uvdWtudDsSXT6PNmgNbNPZrEBX5R9y_thkIU7P3BQYj4GSBptgMWCCwls1i6G_9n8A9W_mJY</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Galea, Natasha M.</creator><creator>Knapp, Daniel</creator><creator>Ziegler, Tom</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070401</creationdate><title>Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction</title><author>Galea, Natasha M. ; Knapp, Daniel ; Ziegler, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-55f3a7b77ac44ae5ba2b76b3dd378b0a03463a05e8eb043829f3ce801131c3bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alloy catalysts</topic><topic>Applied sciences</topic><topic>Carbon adsorption</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Coke</topic><topic>Coking</topic><topic>Copper catalysts</topic><topic>Density functional theory</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Methane</topic><topic>Methane dissociation</topic><topic>Nickel catalysts</topic><topic>Nickel step-blocking</topic><topic>Reaction kinetics</topic><topic>Solid oxide fuel cells</topic><topic>Surface physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galea, Natasha M.</creatorcontrib><creatorcontrib>Knapp, Daniel</creatorcontrib><creatorcontrib>Ziegler, Tom</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galea, Natasha M.</au><au>Knapp, Daniel</au><au>Ziegler, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction</atitle><jtitle>Journal of catalysis</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>247</volume><issue>1</issue><spage>20</spage><epage>33</epage><pages>20-33</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>We studied the dissociation of methane into adsorbed carbon and hydrogen atoms on various surfaces to gain insight into carbon coke formation on solid-oxide fuel cell anodes. Preferred adsorption sites and energies were calculated for
CH
x
(
x
=
0
,
…
,
3
) and H on Ni and Cu (111) planar and (211) stepped surfaces, on Cu
Ni and Cu
Co surface alloys, and on Ni(211) surfaces with step edge sites blocked by Au- and S-promoter atoms. Transition states and kinetic barriers were calculated on Cu(111) and Cu(211) and on the S
Ni(211) surface. Our results are in excellent agreement with existing experimental and theoretical studies, suggesting that copper anodes have very low activity and high resistance to coking, and that step-blocking on the nickel surface can increase the tolerance of nickel-based anodes to carbon coke formation.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2006.12.021</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9517 |
ispartof | Journal of catalysis, 2007-04, Vol.247 (1), p.20-33 |
issn | 0021-9517 1090-2694 |
language | eng |
recordid | cdi_proquest_journals_195446521 |
source | ScienceDirect Freedom Collection |
subjects | Alloy catalysts Applied sciences Carbon adsorption Catalysis Chemistry Coke Coking Copper catalysts Density functional theory Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells General and physical chemistry Methane Methane dissociation Nickel catalysts Nickel step-blocking Reaction kinetics Solid oxide fuel cells Surface physical chemistry Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20functional%20theory%20studies%20of%20methane%20dissociation%20on%20anode%20catalysts%20in%20solid-oxide%20fuel%20cells:%20Suggestions%20for%20coke%20reduction&rft.jtitle=Journal%20of%20catalysis&rft.au=Galea,%20Natasha%20M.&rft.date=2007-04-01&rft.volume=247&rft.issue=1&rft.spage=20&rft.epage=33&rft.pages=20-33&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2006.12.021&rft_dat=%3Cproquest_cross%3E1249012211%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-55f3a7b77ac44ae5ba2b76b3dd378b0a03463a05e8eb043829f3ce801131c3bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195446521&rft_id=info:pmid/&rfr_iscdi=true |