Loading…

Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction

We studied the dissociation of methane into adsorbed carbon and hydrogen atoms on various surfaces to gain insight into carbon coke formation on solid-oxide fuel cell anodes. Preferred adsorption sites and energies were calculated for CH x ( x = 0 , … , 3 ) and H on Ni and Cu (111) planar and (211)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of catalysis 2007-04, Vol.247 (1), p.20-33
Main Authors: Galea, Natasha M., Knapp, Daniel, Ziegler, Tom
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-55f3a7b77ac44ae5ba2b76b3dd378b0a03463a05e8eb043829f3ce801131c3bf3
cites
container_end_page 33
container_issue 1
container_start_page 20
container_title Journal of catalysis
container_volume 247
creator Galea, Natasha M.
Knapp, Daniel
Ziegler, Tom
description We studied the dissociation of methane into adsorbed carbon and hydrogen atoms on various surfaces to gain insight into carbon coke formation on solid-oxide fuel cell anodes. Preferred adsorption sites and energies were calculated for CH x ( x = 0 , … , 3 ) and H on Ni and Cu (111) planar and (211) stepped surfaces, on Cu Ni and Cu Co surface alloys, and on Ni(211) surfaces with step edge sites blocked by Au- and S-promoter atoms. Transition states and kinetic barriers were calculated on Cu(111) and Cu(211) and on the S Ni(211) surface. Our results are in excellent agreement with existing experimental and theoretical studies, suggesting that copper anodes have very low activity and high resistance to coking, and that step-blocking on the nickel surface can increase the tolerance of nickel-based anodes to carbon coke formation.
doi_str_mv 10.1016/j.jcat.2006.12.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195446521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002195170700005X</els_id><sourcerecordid>1249012211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-55f3a7b77ac44ae5ba2b76b3dd378b0a03463a05e8eb043829f3ce801131c3bf3</originalsourceid><addsrcrecordid>eNp9kN1qFTEUhYNU8LT6Al4FoZczzc9kfqQ3UrUtFLxQr0Mm2WkzTic1O1M8L-Bzm-kp9E4IBJJv7bXXIuQ9ZzVnvD2b6smaXAvG2pqLmgn-iuw4G1gl2qE5IjtWnqpB8e4NOUacGONcqX5H_n6GBUPeU78uNoe4mJnmO4hpTzGvLgDS6Ok95DuzAHUBMdpgNpCWY5bogBZnM-8xIw0LxTgHV8U_oXz4FWZqYZ7xI_2-3t4CbkKkPiZq4y-gCdz65PqWvPZmRnj3fJ-Qn1-__Li4qm6-XV5ffLqpbCNkrpTy0nRj1xnbNAbUaMTYtaN0Tnb9yAyTTSsNU9DDyBrZi8FLC30JK7mVo5cn5MNh7kOKv9eyj57imkpo1HxQTdMqwQskDpBNETGB1w8p3Ju015zprW496a1uvdWtudDsSXT6PNmgNbNPZrEBX5R9y_thkIU7P3BQYj4GSBptgMWCCwls1i6G_9n8A9W_mJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195446521</pqid></control><display><type>article</type><title>Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction</title><source>ScienceDirect Freedom Collection</source><creator>Galea, Natasha M. ; Knapp, Daniel ; Ziegler, Tom</creator><creatorcontrib>Galea, Natasha M. ; Knapp, Daniel ; Ziegler, Tom</creatorcontrib><description>We studied the dissociation of methane into adsorbed carbon and hydrogen atoms on various surfaces to gain insight into carbon coke formation on solid-oxide fuel cell anodes. Preferred adsorption sites and energies were calculated for CH x ( x = 0 , … , 3 ) and H on Ni and Cu (111) planar and (211) stepped surfaces, on Cu Ni and Cu Co surface alloys, and on Ni(211) surfaces with step edge sites blocked by Au- and S-promoter atoms. Transition states and kinetic barriers were calculated on Cu(111) and Cu(211) and on the S Ni(211) surface. Our results are in excellent agreement with existing experimental and theoretical studies, suggesting that copper anodes have very low activity and high resistance to coking, and that step-blocking on the nickel surface can increase the tolerance of nickel-based anodes to carbon coke formation.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2006.12.021</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Alloy catalysts ; Applied sciences ; Carbon adsorption ; Catalysis ; Chemistry ; Coke ; Coking ; Copper catalysts ; Density functional theory ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Methane ; Methane dissociation ; Nickel catalysts ; Nickel step-blocking ; Reaction kinetics ; Solid oxide fuel cells ; Surface physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of catalysis, 2007-04, Vol.247 (1), p.20-33</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright © 2007 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-55f3a7b77ac44ae5ba2b76b3dd378b0a03463a05e8eb043829f3ce801131c3bf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18618993$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Galea, Natasha M.</creatorcontrib><creatorcontrib>Knapp, Daniel</creatorcontrib><creatorcontrib>Ziegler, Tom</creatorcontrib><title>Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction</title><title>Journal of catalysis</title><description>We studied the dissociation of methane into adsorbed carbon and hydrogen atoms on various surfaces to gain insight into carbon coke formation on solid-oxide fuel cell anodes. Preferred adsorption sites and energies were calculated for CH x ( x = 0 , … , 3 ) and H on Ni and Cu (111) planar and (211) stepped surfaces, on Cu Ni and Cu Co surface alloys, and on Ni(211) surfaces with step edge sites blocked by Au- and S-promoter atoms. Transition states and kinetic barriers were calculated on Cu(111) and Cu(211) and on the S Ni(211) surface. Our results are in excellent agreement with existing experimental and theoretical studies, suggesting that copper anodes have very low activity and high resistance to coking, and that step-blocking on the nickel surface can increase the tolerance of nickel-based anodes to carbon coke formation.</description><subject>Alloy catalysts</subject><subject>Applied sciences</subject><subject>Carbon adsorption</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Coke</subject><subject>Coking</subject><subject>Copper catalysts</subject><subject>Density functional theory</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Methane</subject><subject>Methane dissociation</subject><subject>Nickel catalysts</subject><subject>Nickel step-blocking</subject><subject>Reaction kinetics</subject><subject>Solid oxide fuel cells</subject><subject>Surface physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kN1qFTEUhYNU8LT6Al4FoZczzc9kfqQ3UrUtFLxQr0Mm2WkzTic1O1M8L-Bzm-kp9E4IBJJv7bXXIuQ9ZzVnvD2b6smaXAvG2pqLmgn-iuw4G1gl2qE5IjtWnqpB8e4NOUacGONcqX5H_n6GBUPeU78uNoe4mJnmO4hpTzGvLgDS6Ok95DuzAHUBMdpgNpCWY5bogBZnM-8xIw0LxTgHV8U_oXz4FWZqYZ7xI_2-3t4CbkKkPiZq4y-gCdz65PqWvPZmRnj3fJ-Qn1-__Li4qm6-XV5ffLqpbCNkrpTy0nRj1xnbNAbUaMTYtaN0Tnb9yAyTTSsNU9DDyBrZi8FLC30JK7mVo5cn5MNh7kOKv9eyj57imkpo1HxQTdMqwQskDpBNETGB1w8p3Ju015zprW496a1uvdWtudDsSXT6PNmgNbNPZrEBX5R9y_thkIU7P3BQYj4GSBptgMWCCwls1i6G_9n8A9W_mJY</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Galea, Natasha M.</creator><creator>Knapp, Daniel</creator><creator>Ziegler, Tom</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070401</creationdate><title>Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction</title><author>Galea, Natasha M. ; Knapp, Daniel ; Ziegler, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-55f3a7b77ac44ae5ba2b76b3dd378b0a03463a05e8eb043829f3ce801131c3bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alloy catalysts</topic><topic>Applied sciences</topic><topic>Carbon adsorption</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Coke</topic><topic>Coking</topic><topic>Copper catalysts</topic><topic>Density functional theory</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Methane</topic><topic>Methane dissociation</topic><topic>Nickel catalysts</topic><topic>Nickel step-blocking</topic><topic>Reaction kinetics</topic><topic>Solid oxide fuel cells</topic><topic>Surface physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galea, Natasha M.</creatorcontrib><creatorcontrib>Knapp, Daniel</creatorcontrib><creatorcontrib>Ziegler, Tom</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galea, Natasha M.</au><au>Knapp, Daniel</au><au>Ziegler, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction</atitle><jtitle>Journal of catalysis</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>247</volume><issue>1</issue><spage>20</spage><epage>33</epage><pages>20-33</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>We studied the dissociation of methane into adsorbed carbon and hydrogen atoms on various surfaces to gain insight into carbon coke formation on solid-oxide fuel cell anodes. Preferred adsorption sites and energies were calculated for CH x ( x = 0 , … , 3 ) and H on Ni and Cu (111) planar and (211) stepped surfaces, on Cu Ni and Cu Co surface alloys, and on Ni(211) surfaces with step edge sites blocked by Au- and S-promoter atoms. Transition states and kinetic barriers were calculated on Cu(111) and Cu(211) and on the S Ni(211) surface. Our results are in excellent agreement with existing experimental and theoretical studies, suggesting that copper anodes have very low activity and high resistance to coking, and that step-blocking on the nickel surface can increase the tolerance of nickel-based anodes to carbon coke formation.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2006.12.021</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 2007-04, Vol.247 (1), p.20-33
issn 0021-9517
1090-2694
language eng
recordid cdi_proquest_journals_195446521
source ScienceDirect Freedom Collection
subjects Alloy catalysts
Applied sciences
Carbon adsorption
Catalysis
Chemistry
Coke
Coking
Copper catalysts
Density functional theory
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
General and physical chemistry
Methane
Methane dissociation
Nickel catalysts
Nickel step-blocking
Reaction kinetics
Solid oxide fuel cells
Surface physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20functional%20theory%20studies%20of%20methane%20dissociation%20on%20anode%20catalysts%20in%20solid-oxide%20fuel%20cells:%20Suggestions%20for%20coke%20reduction&rft.jtitle=Journal%20of%20catalysis&rft.au=Galea,%20Natasha%20M.&rft.date=2007-04-01&rft.volume=247&rft.issue=1&rft.spage=20&rft.epage=33&rft.pages=20-33&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2006.12.021&rft_dat=%3Cproquest_cross%3E1249012211%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-55f3a7b77ac44ae5ba2b76b3dd378b0a03463a05e8eb043829f3ce801131c3bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195446521&rft_id=info:pmid/&rfr_iscdi=true