Loading…

Effects of diffusion and particle size in a kinetic model of catalyzed reactions

We study a model for unimolecular reaction on a supported catalyst including reactant diffusion and desorption, using analytical methods and scaling concepts. For rapid reactions, enhancing surface diffusion or increasing particle size favors the flux of reactants to the catalyst particles, which in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of catalysis 2009-04, Vol.263 (1), p.67-74
Main Authors: Mattos, T.G., Aarão Reis, Fábio D.A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-980cd6871b33fcc5f706c979a62fd8c586c484e5d6a29a34185d66ffabcdc0ed3
cites
container_end_page 74
container_issue 1
container_start_page 67
container_title Journal of catalysis
container_volume 263
creator Mattos, T.G.
Aarão Reis, Fábio D.A.
description We study a model for unimolecular reaction on a supported catalyst including reactant diffusion and desorption, using analytical methods and scaling concepts. For rapid reactions, enhancing surface diffusion or increasing particle size favors the flux of reactants to the catalyst particles, which increases the turnover frequency (TOF). The reactant flux towards the support becomes dominant when the ratio of diffusion lengths in the catalyst and in the support exceeds a critical value. A peak in the TOF is obtained for temperature-dependent rates if desorption energy in the support ( E d ) exceeds those of diffusion ( E D ) and reaction ( E r ). Significant dependence on particle size is observed when the gaps between those energies are small, with small particles giving higher TOF. Slow reactions ( E r > E d ) give TOF monotonically increasing with temperature, with higher reactant losses in small particles. The scaling concepts can be extended to interpret experimental data and results of more complex models. In a simple model of reaction, diffusion, adsorption and desorption, the conditions for a net flux of reactants from the support to the catalyst are determined, with significant increase of the turnover frequency for small particles.
doi_str_mv 10.1016/j.jcat.2009.01.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195448313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951709000256</els_id><sourcerecordid>1662735881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-980cd6871b33fcc5f706c979a62fd8c586c484e5d6a29a34185d66ffabcdc0ed3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAXBY2smbdMGvMjiFyzoQc8hO0kgtduuSVfY_fWm7OJRGJjh8T6YR8g1sBwYiLs2b1GPOWdM5gzSwAmZAZMs40KWp2TGGIdMVlCfk4sYW5YYVdXMyPujcxbHSAdHjXduG_3QU90butFh9NhZGv3eUp9A-uV7mzC6HoztJkXK1N1ubw0NVuOYpPGSnDndRXt13HPy-fT4sXjJlm_Pr4uHZYYlgzGTDUMjmhpWReEQK1czgbKWWnBnGqwagWVT2soIzaUuSmjSKZzTKzTIrCnm5ObguwnD99bGUbXDNvQpUoGsyrIpoEgkfiBhGGIM1qlN8GsddgqYmopTrZqKU1NxikEaSKLbo7OOqDsXdI8-_ik5FJXkfDK_P_BsevPH26AietujNT6kSpUZ_H8xv8neg8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195448313</pqid></control><display><type>article</type><title>Effects of diffusion and particle size in a kinetic model of catalyzed reactions</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Mattos, T.G. ; Aarão Reis, Fábio D.A.</creator><creatorcontrib>Mattos, T.G. ; Aarão Reis, Fábio D.A.</creatorcontrib><description>We study a model for unimolecular reaction on a supported catalyst including reactant diffusion and desorption, using analytical methods and scaling concepts. For rapid reactions, enhancing surface diffusion or increasing particle size favors the flux of reactants to the catalyst particles, which increases the turnover frequency (TOF). The reactant flux towards the support becomes dominant when the ratio of diffusion lengths in the catalyst and in the support exceeds a critical value. A peak in the TOF is obtained for temperature-dependent rates if desorption energy in the support ( E d ) exceeds those of diffusion ( E D ) and reaction ( E r ). Significant dependence on particle size is observed when the gaps between those energies are small, with small particles giving higher TOF. Slow reactions ( E r &gt; E d ) give TOF monotonically increasing with temperature, with higher reactant losses in small particles. The scaling concepts can be extended to interpret experimental data and results of more complex models. In a simple model of reaction, diffusion, adsorption and desorption, the conditions for a net flux of reactants from the support to the catalyst are determined, with significant increase of the turnover frequency for small particles.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2009.01.011</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Back spillover ; Catalysis ; Catalysts ; Chemical reactions ; Chemistry ; Desorption ; Diffusion ; Exact sciences and technology ; General and physical chemistry ; Kinetics ; Scaling ; Spillover ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of catalysis, 2009-04, Vol.263 (1), p.67-74</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-980cd6871b33fcc5f706c979a62fd8c586c484e5d6a29a34185d66ffabcdc0ed3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21359223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mattos, T.G.</creatorcontrib><creatorcontrib>Aarão Reis, Fábio D.A.</creatorcontrib><title>Effects of diffusion and particle size in a kinetic model of catalyzed reactions</title><title>Journal of catalysis</title><description>We study a model for unimolecular reaction on a supported catalyst including reactant diffusion and desorption, using analytical methods and scaling concepts. For rapid reactions, enhancing surface diffusion or increasing particle size favors the flux of reactants to the catalyst particles, which increases the turnover frequency (TOF). The reactant flux towards the support becomes dominant when the ratio of diffusion lengths in the catalyst and in the support exceeds a critical value. A peak in the TOF is obtained for temperature-dependent rates if desorption energy in the support ( E d ) exceeds those of diffusion ( E D ) and reaction ( E r ). Significant dependence on particle size is observed when the gaps between those energies are small, with small particles giving higher TOF. Slow reactions ( E r &gt; E d ) give TOF monotonically increasing with temperature, with higher reactant losses in small particles. The scaling concepts can be extended to interpret experimental data and results of more complex models. In a simple model of reaction, diffusion, adsorption and desorption, the conditions for a net flux of reactants from the support to the catalyst are determined, with significant increase of the turnover frequency for small particles.</description><subject>Back spillover</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Desorption</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics</subject><subject>Scaling</subject><subject>Spillover</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPAXBY2smbdMGvMjiFyzoQc8hO0kgtduuSVfY_fWm7OJRGJjh8T6YR8g1sBwYiLs2b1GPOWdM5gzSwAmZAZMs40KWp2TGGIdMVlCfk4sYW5YYVdXMyPujcxbHSAdHjXduG_3QU90butFh9NhZGv3eUp9A-uV7mzC6HoztJkXK1N1ubw0NVuOYpPGSnDndRXt13HPy-fT4sXjJlm_Pr4uHZYYlgzGTDUMjmhpWReEQK1czgbKWWnBnGqwagWVT2soIzaUuSmjSKZzTKzTIrCnm5ObguwnD99bGUbXDNvQpUoGsyrIpoEgkfiBhGGIM1qlN8GsddgqYmopTrZqKU1NxikEaSKLbo7OOqDsXdI8-_ik5FJXkfDK_P_BsevPH26AietujNT6kSpUZ_H8xv8neg8M</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Mattos, T.G.</creator><creator>Aarão Reis, Fábio D.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090401</creationdate><title>Effects of diffusion and particle size in a kinetic model of catalyzed reactions</title><author>Mattos, T.G. ; Aarão Reis, Fábio D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-980cd6871b33fcc5f706c979a62fd8c586c484e5d6a29a34185d66ffabcdc0ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Back spillover</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Desorption</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics</topic><topic>Scaling</topic><topic>Spillover</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattos, T.G.</creatorcontrib><creatorcontrib>Aarão Reis, Fábio D.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattos, T.G.</au><au>Aarão Reis, Fábio D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of diffusion and particle size in a kinetic model of catalyzed reactions</atitle><jtitle>Journal of catalysis</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>263</volume><issue>1</issue><spage>67</spage><epage>74</epage><pages>67-74</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>We study a model for unimolecular reaction on a supported catalyst including reactant diffusion and desorption, using analytical methods and scaling concepts. For rapid reactions, enhancing surface diffusion or increasing particle size favors the flux of reactants to the catalyst particles, which increases the turnover frequency (TOF). The reactant flux towards the support becomes dominant when the ratio of diffusion lengths in the catalyst and in the support exceeds a critical value. A peak in the TOF is obtained for temperature-dependent rates if desorption energy in the support ( E d ) exceeds those of diffusion ( E D ) and reaction ( E r ). Significant dependence on particle size is observed when the gaps between those energies are small, with small particles giving higher TOF. Slow reactions ( E r &gt; E d ) give TOF monotonically increasing with temperature, with higher reactant losses in small particles. The scaling concepts can be extended to interpret experimental data and results of more complex models. In a simple model of reaction, diffusion, adsorption and desorption, the conditions for a net flux of reactants from the support to the catalyst are determined, with significant increase of the turnover frequency for small particles.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2009.01.011</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 2009-04, Vol.263 (1), p.67-74
issn 0021-9517
1090-2694
language eng
recordid cdi_proquest_journals_195448313
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Back spillover
Catalysis
Catalysts
Chemical reactions
Chemistry
Desorption
Diffusion
Exact sciences and technology
General and physical chemistry
Kinetics
Scaling
Spillover
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Effects of diffusion and particle size in a kinetic model of catalyzed reactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20diffusion%20and%20particle%20size%20in%20a%20kinetic%20model%20of%20catalyzed%20reactions&rft.jtitle=Journal%20of%20catalysis&rft.au=Mattos,%20T.G.&rft.date=2009-04-01&rft.volume=263&rft.issue=1&rft.spage=67&rft.epage=74&rft.pages=67-74&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2009.01.011&rft_dat=%3Cproquest_cross%3E1662735881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-980cd6871b33fcc5f706c979a62fd8c586c484e5d6a29a34185d66ffabcdc0ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195448313&rft_id=info:pmid/&rfr_iscdi=true