Loading…
Effects of diffusion and particle size in a kinetic model of catalyzed reactions
We study a model for unimolecular reaction on a supported catalyst including reactant diffusion and desorption, using analytical methods and scaling concepts. For rapid reactions, enhancing surface diffusion or increasing particle size favors the flux of reactants to the catalyst particles, which in...
Saved in:
Published in: | Journal of catalysis 2009-04, Vol.263 (1), p.67-74 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-980cd6871b33fcc5f706c979a62fd8c586c484e5d6a29a34185d66ffabcdc0ed3 |
---|---|
cites | |
container_end_page | 74 |
container_issue | 1 |
container_start_page | 67 |
container_title | Journal of catalysis |
container_volume | 263 |
creator | Mattos, T.G. Aarão Reis, Fábio D.A. |
description | We study a model for unimolecular reaction on a supported catalyst including reactant diffusion and desorption, using analytical methods and scaling concepts. For rapid reactions, enhancing surface diffusion or increasing particle size favors the flux of reactants to the catalyst particles, which increases the turnover frequency (TOF). The reactant flux towards the support becomes dominant when the ratio of diffusion lengths in the catalyst and in the support exceeds a critical value. A peak in the TOF is obtained for temperature-dependent rates if desorption energy in the support (
E
d
) exceeds those of diffusion (
E
D
) and reaction (
E
r
). Significant dependence on particle size is observed when the gaps between those energies are small, with small particles giving higher TOF. Slow reactions (
E
r
>
E
d
) give TOF monotonically increasing with temperature, with higher reactant losses in small particles. The scaling concepts can be extended to interpret experimental data and results of more complex models.
In a simple model of reaction, diffusion, adsorption and desorption, the conditions for a net flux of reactants from the support to the catalyst are determined, with significant increase of the turnover frequency for small particles. |
doi_str_mv | 10.1016/j.jcat.2009.01.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195448313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951709000256</els_id><sourcerecordid>1662735881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-980cd6871b33fcc5f706c979a62fd8c586c484e5d6a29a34185d66ffabcdc0ed3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAXBY2smbdMGvMjiFyzoQc8hO0kgtduuSVfY_fWm7OJRGJjh8T6YR8g1sBwYiLs2b1GPOWdM5gzSwAmZAZMs40KWp2TGGIdMVlCfk4sYW5YYVdXMyPujcxbHSAdHjXduG_3QU90butFh9NhZGv3eUp9A-uV7mzC6HoztJkXK1N1ubw0NVuOYpPGSnDndRXt13HPy-fT4sXjJlm_Pr4uHZYYlgzGTDUMjmhpWReEQK1czgbKWWnBnGqwagWVT2soIzaUuSmjSKZzTKzTIrCnm5ObguwnD99bGUbXDNvQpUoGsyrIpoEgkfiBhGGIM1qlN8GsddgqYmopTrZqKU1NxikEaSKLbo7OOqDsXdI8-_ik5FJXkfDK_P_BsevPH26AietujNT6kSpUZ_H8xv8neg8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195448313</pqid></control><display><type>article</type><title>Effects of diffusion and particle size in a kinetic model of catalyzed reactions</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Mattos, T.G. ; Aarão Reis, Fábio D.A.</creator><creatorcontrib>Mattos, T.G. ; Aarão Reis, Fábio D.A.</creatorcontrib><description>We study a model for unimolecular reaction on a supported catalyst including reactant diffusion and desorption, using analytical methods and scaling concepts. For rapid reactions, enhancing surface diffusion or increasing particle size favors the flux of reactants to the catalyst particles, which increases the turnover frequency (TOF). The reactant flux towards the support becomes dominant when the ratio of diffusion lengths in the catalyst and in the support exceeds a critical value. A peak in the TOF is obtained for temperature-dependent rates if desorption energy in the support (
E
d
) exceeds those of diffusion (
E
D
) and reaction (
E
r
). Significant dependence on particle size is observed when the gaps between those energies are small, with small particles giving higher TOF. Slow reactions (
E
r
>
E
d
) give TOF monotonically increasing with temperature, with higher reactant losses in small particles. The scaling concepts can be extended to interpret experimental data and results of more complex models.
In a simple model of reaction, diffusion, adsorption and desorption, the conditions for a net flux of reactants from the support to the catalyst are determined, with significant increase of the turnover frequency for small particles.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2009.01.011</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Back spillover ; Catalysis ; Catalysts ; Chemical reactions ; Chemistry ; Desorption ; Diffusion ; Exact sciences and technology ; General and physical chemistry ; Kinetics ; Scaling ; Spillover ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of catalysis, 2009-04, Vol.263 (1), p.67-74</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-980cd6871b33fcc5f706c979a62fd8c586c484e5d6a29a34185d66ffabcdc0ed3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21359223$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mattos, T.G.</creatorcontrib><creatorcontrib>Aarão Reis, Fábio D.A.</creatorcontrib><title>Effects of diffusion and particle size in a kinetic model of catalyzed reactions</title><title>Journal of catalysis</title><description>We study a model for unimolecular reaction on a supported catalyst including reactant diffusion and desorption, using analytical methods and scaling concepts. For rapid reactions, enhancing surface diffusion or increasing particle size favors the flux of reactants to the catalyst particles, which increases the turnover frequency (TOF). The reactant flux towards the support becomes dominant when the ratio of diffusion lengths in the catalyst and in the support exceeds a critical value. A peak in the TOF is obtained for temperature-dependent rates if desorption energy in the support (
E
d
) exceeds those of diffusion (
E
D
) and reaction (
E
r
). Significant dependence on particle size is observed when the gaps between those energies are small, with small particles giving higher TOF. Slow reactions (
E
r
>
E
d
) give TOF monotonically increasing with temperature, with higher reactant losses in small particles. The scaling concepts can be extended to interpret experimental data and results of more complex models.
In a simple model of reaction, diffusion, adsorption and desorption, the conditions for a net flux of reactants from the support to the catalyst are determined, with significant increase of the turnover frequency for small particles.</description><subject>Back spillover</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Desorption</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics</subject><subject>Scaling</subject><subject>Spillover</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPAXBY2smbdMGvMjiFyzoQc8hO0kgtduuSVfY_fWm7OJRGJjh8T6YR8g1sBwYiLs2b1GPOWdM5gzSwAmZAZMs40KWp2TGGIdMVlCfk4sYW5YYVdXMyPujcxbHSAdHjXduG_3QU90butFh9NhZGv3eUp9A-uV7mzC6HoztJkXK1N1ubw0NVuOYpPGSnDndRXt13HPy-fT4sXjJlm_Pr4uHZYYlgzGTDUMjmhpWReEQK1czgbKWWnBnGqwagWVT2soIzaUuSmjSKZzTKzTIrCnm5ObguwnD99bGUbXDNvQpUoGsyrIpoEgkfiBhGGIM1qlN8GsddgqYmopTrZqKU1NxikEaSKLbo7OOqDsXdI8-_ik5FJXkfDK_P_BsevPH26AietujNT6kSpUZ_H8xv8neg8M</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Mattos, T.G.</creator><creator>Aarão Reis, Fábio D.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090401</creationdate><title>Effects of diffusion and particle size in a kinetic model of catalyzed reactions</title><author>Mattos, T.G. ; Aarão Reis, Fábio D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-980cd6871b33fcc5f706c979a62fd8c586c484e5d6a29a34185d66ffabcdc0ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Back spillover</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Desorption</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics</topic><topic>Scaling</topic><topic>Spillover</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattos, T.G.</creatorcontrib><creatorcontrib>Aarão Reis, Fábio D.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattos, T.G.</au><au>Aarão Reis, Fábio D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of diffusion and particle size in a kinetic model of catalyzed reactions</atitle><jtitle>Journal of catalysis</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>263</volume><issue>1</issue><spage>67</spage><epage>74</epage><pages>67-74</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>We study a model for unimolecular reaction on a supported catalyst including reactant diffusion and desorption, using analytical methods and scaling concepts. For rapid reactions, enhancing surface diffusion or increasing particle size favors the flux of reactants to the catalyst particles, which increases the turnover frequency (TOF). The reactant flux towards the support becomes dominant when the ratio of diffusion lengths in the catalyst and in the support exceeds a critical value. A peak in the TOF is obtained for temperature-dependent rates if desorption energy in the support (
E
d
) exceeds those of diffusion (
E
D
) and reaction (
E
r
). Significant dependence on particle size is observed when the gaps between those energies are small, with small particles giving higher TOF. Slow reactions (
E
r
>
E
d
) give TOF monotonically increasing with temperature, with higher reactant losses in small particles. The scaling concepts can be extended to interpret experimental data and results of more complex models.
In a simple model of reaction, diffusion, adsorption and desorption, the conditions for a net flux of reactants from the support to the catalyst are determined, with significant increase of the turnover frequency for small particles.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2009.01.011</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9517 |
ispartof | Journal of catalysis, 2009-04, Vol.263 (1), p.67-74 |
issn | 0021-9517 1090-2694 |
language | eng |
recordid | cdi_proquest_journals_195448313 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Back spillover Catalysis Catalysts Chemical reactions Chemistry Desorption Diffusion Exact sciences and technology General and physical chemistry Kinetics Scaling Spillover Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Effects of diffusion and particle size in a kinetic model of catalyzed reactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20diffusion%20and%20particle%20size%20in%20a%20kinetic%20model%20of%20catalyzed%20reactions&rft.jtitle=Journal%20of%20catalysis&rft.au=Mattos,%20T.G.&rft.date=2009-04-01&rft.volume=263&rft.issue=1&rft.spage=67&rft.epage=74&rft.pages=67-74&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2009.01.011&rft_dat=%3Cproquest_cross%3E1662735881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-980cd6871b33fcc5f706c979a62fd8c586c484e5d6a29a34185d66ffabcdc0ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195448313&rft_id=info:pmid/&rfr_iscdi=true |