Loading…

Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)

A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with ver...

Full description

Saved in:
Bibliographic Details
Published in:Rock mechanics and rock engineering 2017-11, Vol.50 (11), p.2985-3001
Main Authors: López-Comino, J. A., Cesca, S., Heimann, S., Grigoli, F., Milkereit, C., Dahm, T., Zang, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593
cites cdi_FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593
container_end_page 3001
container_issue 11
container_start_page 2985
container_title Rock mechanics and rock engineering
container_volume 50
creator López-Comino, J. A.
Cesca, S.
Heimann, S.
Grigoli, F.
Milkereit, C.
Dahm, T.
Zang, A.
description A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency–magnitude distribution from AE magnitudes (MAE) reveals a high b value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume (~105 m 3 ), where the lengths of the principal axes ( a  = 10 m; b  = 5 m; c  = 4 m) define its size and its orientation can be estimated for a rupture plane (strike ~123°, dip ~60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.
doi_str_mv 10.1007/s00603-017-1285-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1954557233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954557233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqXwAGyWWGAI-BLHyYhKL0iVkLhIbJbjnNCUEgc7USkzz8QL9MVwVAYWpjP8t6MPoVNKLikh8soTkhAeESojylIRkT00oDGPo1jw5300IJLxiCWcHaIj75eEBFGmA1SNFtpp04KrPnVb2RrbEs82hdPdqjJ40mudA4-nzq7bBb7pXFW_4HYBePvlm-03nmlX4HtrXvFc59bp1roNHn80ofEN6hafP6yhgPriGB2UeuXh5PcO0dNk_DiaRfO76e3oeh4ZLrI2SqmRpdYs5hnNORVJaVIAkkkKjOVcMwZEU81zUeq8NBnJJUChgRWS5YnI-BCd7XobZ9878K1a2s7VYVLRTMRCBBI8uOjOZZz13kGpmvCvdhtFieqJqh1RFYiqnqgiIcN2Gd_0EMD9af439AMgkntO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954557233</pqid></control><display><type>article</type><title>Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)</title><source>Springer Link</source><creator>López-Comino, J. A. ; Cesca, S. ; Heimann, S. ; Grigoli, F. ; Milkereit, C. ; Dahm, T. ; Zang, A.</creator><creatorcontrib>López-Comino, J. A. ; Cesca, S. ; Heimann, S. ; Grigoli, F. ; Milkereit, C. ; Dahm, T. ; Zang, A.</creatorcontrib><description>A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency–magnitude distribution from AE magnitudes (MAE) reveals a high b value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume (~105 m 3 ), where the lengths of the principal axes ( a  = 10 m; b  = 5 m; c  = 4 m) define its size and its orientation can be estimated for a rupture plane (strike ~123°, dip ~60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-017-1285-0</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Acoustic emission ; Boreholes ; Civil Engineering ; Coherence analysis ; Crack propagation ; Detection ; Earth and Environmental Science ; Earth Sciences ; Experiments ; Fractures ; Geophysics/Geodesy ; Growth ; Hydraulic fracturing ; Hydraulics ; Injection ; Laboratories ; Orientation ; Original Paper ; Reinjection ; Rocks ; Rupture ; Rupturing ; Water injection</subject><ispartof>Rock mechanics and rock engineering, 2017-11, Vol.50 (11), p.2985-3001</ispartof><rights>Springer-Verlag GmbH Austria 2017</rights><rights>Rock Mechanics and Rock Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593</citedby><cites>FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593</cites><orcidid>0000-0002-0337-7888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>López-Comino, J. A.</creatorcontrib><creatorcontrib>Cesca, S.</creatorcontrib><creatorcontrib>Heimann, S.</creatorcontrib><creatorcontrib>Grigoli, F.</creatorcontrib><creatorcontrib>Milkereit, C.</creatorcontrib><creatorcontrib>Dahm, T.</creatorcontrib><creatorcontrib>Zang, A.</creatorcontrib><title>Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency–magnitude distribution from AE magnitudes (MAE) reveals a high b value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume (~105 m 3 ), where the lengths of the principal axes ( a  = 10 m; b  = 5 m; c  = 4 m) define its size and its orientation can be estimated for a rupture plane (strike ~123°, dip ~60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.</description><subject>Acoustic emission</subject><subject>Boreholes</subject><subject>Civil Engineering</subject><subject>Coherence analysis</subject><subject>Crack propagation</subject><subject>Detection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Experiments</subject><subject>Fractures</subject><subject>Geophysics/Geodesy</subject><subject>Growth</subject><subject>Hydraulic fracturing</subject><subject>Hydraulics</subject><subject>Injection</subject><subject>Laboratories</subject><subject>Orientation</subject><subject>Original Paper</subject><subject>Reinjection</subject><subject>Rocks</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>Water injection</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqXwAGyWWGAI-BLHyYhKL0iVkLhIbJbjnNCUEgc7USkzz8QL9MVwVAYWpjP8t6MPoVNKLikh8soTkhAeESojylIRkT00oDGPo1jw5300IJLxiCWcHaIj75eEBFGmA1SNFtpp04KrPnVb2RrbEs82hdPdqjJ40mudA4-nzq7bBb7pXFW_4HYBePvlm-03nmlX4HtrXvFc59bp1roNHn80ofEN6hafP6yhgPriGB2UeuXh5PcO0dNk_DiaRfO76e3oeh4ZLrI2SqmRpdYs5hnNORVJaVIAkkkKjOVcMwZEU81zUeq8NBnJJUChgRWS5YnI-BCd7XobZ9878K1a2s7VYVLRTMRCBBI8uOjOZZz13kGpmvCvdhtFieqJqh1RFYiqnqgiIcN2Gd_0EMD9af439AMgkntO</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>López-Comino, J. A.</creator><creator>Cesca, S.</creator><creator>Heimann, S.</creator><creator>Grigoli, F.</creator><creator>Milkereit, C.</creator><creator>Dahm, T.</creator><creator>Zang, A.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0337-7888</orcidid></search><sort><creationdate>20171101</creationdate><title>Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)</title><author>López-Comino, J. A. ; Cesca, S. ; Heimann, S. ; Grigoli, F. ; Milkereit, C. ; Dahm, T. ; Zang, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustic emission</topic><topic>Boreholes</topic><topic>Civil Engineering</topic><topic>Coherence analysis</topic><topic>Crack propagation</topic><topic>Detection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Experiments</topic><topic>Fractures</topic><topic>Geophysics/Geodesy</topic><topic>Growth</topic><topic>Hydraulic fracturing</topic><topic>Hydraulics</topic><topic>Injection</topic><topic>Laboratories</topic><topic>Orientation</topic><topic>Original Paper</topic><topic>Reinjection</topic><topic>Rocks</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>Water injection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Comino, J. A.</creatorcontrib><creatorcontrib>Cesca, S.</creatorcontrib><creatorcontrib>Heimann, S.</creatorcontrib><creatorcontrib>Grigoli, F.</creatorcontrib><creatorcontrib>Milkereit, C.</creatorcontrib><creatorcontrib>Dahm, T.</creatorcontrib><creatorcontrib>Zang, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Comino, J. A.</au><au>Cesca, S.</au><au>Heimann, S.</au><au>Grigoli, F.</au><au>Milkereit, C.</au><au>Dahm, T.</au><au>Zang, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>50</volume><issue>11</issue><spage>2985</spage><epage>3001</epage><pages>2985-3001</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency–magnitude distribution from AE magnitudes (MAE) reveals a high b value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume (~105 m 3 ), where the lengths of the principal axes ( a  = 10 m; b  = 5 m; c  = 4 m) define its size and its orientation can be estimated for a rupture plane (strike ~123°, dip ~60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-017-1285-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0337-7888</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0723-2632
ispartof Rock mechanics and rock engineering, 2017-11, Vol.50 (11), p.2985-3001
issn 0723-2632
1434-453X
language eng
recordid cdi_proquest_journals_1954557233
source Springer Link
subjects Acoustic emission
Boreholes
Civil Engineering
Coherence analysis
Crack propagation
Detection
Earth and Environmental Science
Earth Sciences
Experiments
Fractures
Geophysics/Geodesy
Growth
Hydraulic fracturing
Hydraulics
Injection
Laboratories
Orientation
Original Paper
Reinjection
Rocks
Rupture
Rupturing
Water injection
title Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Hydraulic%20Fractures%20Growth%20During%20the%20%C3%84sp%C3%B6%20Hard%20Rock%20Laboratory%20Experiment%20(Sweden)&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=L%C3%B3pez-Comino,%20J.%20A.&rft.date=2017-11-01&rft.volume=50&rft.issue=11&rft.spage=2985&rft.epage=3001&rft.pages=2985-3001&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-017-1285-0&rft_dat=%3Cproquest_cross%3E1954557233%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1954557233&rft_id=info:pmid/&rfr_iscdi=true