Loading…
Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)
A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with ver...
Saved in:
Published in: | Rock mechanics and rock engineering 2017-11, Vol.50 (11), p.2985-3001 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593 |
container_end_page | 3001 |
container_issue | 11 |
container_start_page | 2985 |
container_title | Rock mechanics and rock engineering |
container_volume | 50 |
creator | López-Comino, J. A. Cesca, S. Heimann, S. Grigoli, F. Milkereit, C. Dahm, T. Zang, A. |
description | A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency–magnitude distribution from AE magnitudes (MAE) reveals a high
b
value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume (~105 m
3
), where the lengths of the principal axes (
a
= 10 m;
b
= 5 m;
c
= 4 m) define its size and its orientation can be estimated for a rupture plane (strike ~123°, dip ~60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect. |
doi_str_mv | 10.1007/s00603-017-1285-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1954557233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954557233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqXwAGyWWGAI-BLHyYhKL0iVkLhIbJbjnNCUEgc7USkzz8QL9MVwVAYWpjP8t6MPoVNKLikh8soTkhAeESojylIRkT00oDGPo1jw5300IJLxiCWcHaIj75eEBFGmA1SNFtpp04KrPnVb2RrbEs82hdPdqjJ40mudA4-nzq7bBb7pXFW_4HYBePvlm-03nmlX4HtrXvFc59bp1roNHn80ofEN6hafP6yhgPriGB2UeuXh5PcO0dNk_DiaRfO76e3oeh4ZLrI2SqmRpdYs5hnNORVJaVIAkkkKjOVcMwZEU81zUeq8NBnJJUChgRWS5YnI-BCd7XobZ9878K1a2s7VYVLRTMRCBBI8uOjOZZz13kGpmvCvdhtFieqJqh1RFYiqnqgiIcN2Gd_0EMD9af439AMgkntO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954557233</pqid></control><display><type>article</type><title>Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)</title><source>Springer Link</source><creator>López-Comino, J. A. ; Cesca, S. ; Heimann, S. ; Grigoli, F. ; Milkereit, C. ; Dahm, T. ; Zang, A.</creator><creatorcontrib>López-Comino, J. A. ; Cesca, S. ; Heimann, S. ; Grigoli, F. ; Milkereit, C. ; Dahm, T. ; Zang, A.</creatorcontrib><description>A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency–magnitude distribution from AE magnitudes (MAE) reveals a high
b
value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume (~105 m
3
), where the lengths of the principal axes (
a
= 10 m;
b
= 5 m;
c
= 4 m) define its size and its orientation can be estimated for a rupture plane (strike ~123°, dip ~60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-017-1285-0</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Acoustic emission ; Boreholes ; Civil Engineering ; Coherence analysis ; Crack propagation ; Detection ; Earth and Environmental Science ; Earth Sciences ; Experiments ; Fractures ; Geophysics/Geodesy ; Growth ; Hydraulic fracturing ; Hydraulics ; Injection ; Laboratories ; Orientation ; Original Paper ; Reinjection ; Rocks ; Rupture ; Rupturing ; Water injection</subject><ispartof>Rock mechanics and rock engineering, 2017-11, Vol.50 (11), p.2985-3001</ispartof><rights>Springer-Verlag GmbH Austria 2017</rights><rights>Rock Mechanics and Rock Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593</citedby><cites>FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593</cites><orcidid>0000-0002-0337-7888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>López-Comino, J. A.</creatorcontrib><creatorcontrib>Cesca, S.</creatorcontrib><creatorcontrib>Heimann, S.</creatorcontrib><creatorcontrib>Grigoli, F.</creatorcontrib><creatorcontrib>Milkereit, C.</creatorcontrib><creatorcontrib>Dahm, T.</creatorcontrib><creatorcontrib>Zang, A.</creatorcontrib><title>Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency–magnitude distribution from AE magnitudes (MAE) reveals a high
b
value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume (~105 m
3
), where the lengths of the principal axes (
a
= 10 m;
b
= 5 m;
c
= 4 m) define its size and its orientation can be estimated for a rupture plane (strike ~123°, dip ~60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.</description><subject>Acoustic emission</subject><subject>Boreholes</subject><subject>Civil Engineering</subject><subject>Coherence analysis</subject><subject>Crack propagation</subject><subject>Detection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Experiments</subject><subject>Fractures</subject><subject>Geophysics/Geodesy</subject><subject>Growth</subject><subject>Hydraulic fracturing</subject><subject>Hydraulics</subject><subject>Injection</subject><subject>Laboratories</subject><subject>Orientation</subject><subject>Original Paper</subject><subject>Reinjection</subject><subject>Rocks</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>Water injection</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqXwAGyWWGAI-BLHyYhKL0iVkLhIbJbjnNCUEgc7USkzz8QL9MVwVAYWpjP8t6MPoVNKLikh8soTkhAeESojylIRkT00oDGPo1jw5300IJLxiCWcHaIj75eEBFGmA1SNFtpp04KrPnVb2RrbEs82hdPdqjJ40mudA4-nzq7bBb7pXFW_4HYBePvlm-03nmlX4HtrXvFc59bp1roNHn80ofEN6hafP6yhgPriGB2UeuXh5PcO0dNk_DiaRfO76e3oeh4ZLrI2SqmRpdYs5hnNORVJaVIAkkkKjOVcMwZEU81zUeq8NBnJJUChgRWS5YnI-BCd7XobZ9878K1a2s7VYVLRTMRCBBI8uOjOZZz13kGpmvCvdhtFieqJqh1RFYiqnqgiIcN2Gd_0EMD9af439AMgkntO</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>López-Comino, J. A.</creator><creator>Cesca, S.</creator><creator>Heimann, S.</creator><creator>Grigoli, F.</creator><creator>Milkereit, C.</creator><creator>Dahm, T.</creator><creator>Zang, A.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0337-7888</orcidid></search><sort><creationdate>20171101</creationdate><title>Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)</title><author>López-Comino, J. A. ; Cesca, S. ; Heimann, S. ; Grigoli, F. ; Milkereit, C. ; Dahm, T. ; Zang, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustic emission</topic><topic>Boreholes</topic><topic>Civil Engineering</topic><topic>Coherence analysis</topic><topic>Crack propagation</topic><topic>Detection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Experiments</topic><topic>Fractures</topic><topic>Geophysics/Geodesy</topic><topic>Growth</topic><topic>Hydraulic fracturing</topic><topic>Hydraulics</topic><topic>Injection</topic><topic>Laboratories</topic><topic>Orientation</topic><topic>Original Paper</topic><topic>Reinjection</topic><topic>Rocks</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>Water injection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Comino, J. A.</creatorcontrib><creatorcontrib>Cesca, S.</creatorcontrib><creatorcontrib>Heimann, S.</creatorcontrib><creatorcontrib>Grigoli, F.</creatorcontrib><creatorcontrib>Milkereit, C.</creatorcontrib><creatorcontrib>Dahm, T.</creatorcontrib><creatorcontrib>Zang, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Comino, J. A.</au><au>Cesca, S.</au><au>Heimann, S.</au><au>Grigoli, F.</au><au>Milkereit, C.</au><au>Dahm, T.</au><au>Zang, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>50</volume><issue>11</issue><spage>2985</spage><epage>3001</epage><pages>2985-3001</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency–magnitude distribution from AE magnitudes (MAE) reveals a high
b
value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume (~105 m
3
), where the lengths of the principal axes (
a
= 10 m;
b
= 5 m;
c
= 4 m) define its size and its orientation can be estimated for a rupture plane (strike ~123°, dip ~60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-017-1285-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0337-7888</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-2632 |
ispartof | Rock mechanics and rock engineering, 2017-11, Vol.50 (11), p.2985-3001 |
issn | 0723-2632 1434-453X |
language | eng |
recordid | cdi_proquest_journals_1954557233 |
source | Springer Link |
subjects | Acoustic emission Boreholes Civil Engineering Coherence analysis Crack propagation Detection Earth and Environmental Science Earth Sciences Experiments Fractures Geophysics/Geodesy Growth Hydraulic fracturing Hydraulics Injection Laboratories Orientation Original Paper Reinjection Rocks Rupture Rupturing Water injection |
title | Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Hydraulic%20Fractures%20Growth%20During%20the%20%C3%84sp%C3%B6%20Hard%20Rock%20Laboratory%20Experiment%20(Sweden)&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=L%C3%B3pez-Comino,%20J.%20A.&rft.date=2017-11-01&rft.volume=50&rft.issue=11&rft.spage=2985&rft.epage=3001&rft.pages=2985-3001&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-017-1285-0&rft_dat=%3Cproquest_cross%3E1954557233%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-81c7faa24391b3156fc8ee0971e22b3a22e0a1a3b5fabfc90b7eedae2d72b6593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1954557233&rft_id=info:pmid/&rfr_iscdi=true |