Loading…
Comprehensive analysis of fractures, microstructure, and physical and mechanical properties for the evaluation of the crack resistance of medium-carbon Cr–Ni–Mo steel
The crack resistance of the 38CrNi3MoV (34NiCrMoV14—5. 35NiCrMoV12—5) tempered steel (at various tempering temperatures) has been estimated based on a comprehensive study of the steel fractures, microstructure, physical, and mechanical properties. Stress-intensity factor K 1C at the apex of the crac...
Saved in:
Published in: | Physics of metals and metallography 2017-10, Vol.118 (10), p.1015-1021 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-54692ab8ceb9d3d1ed73f24a9d677a7b9a2e0315e348aa9a6e40b2a767aa11d93 |
---|---|
cites | |
container_end_page | 1021 |
container_issue | 10 |
container_start_page | 1015 |
container_title | Physics of metals and metallography |
container_volume | 118 |
creator | Vorob’ev, R. A. Dubinskii, V. N. Evstifeeva, V. V. |
description | The crack resistance of the 38CrNi3MoV (34NiCrMoV14—5. 35NiCrMoV12—5) tempered steel (at various tempering temperatures) has been estimated based on a comprehensive study of the steel fractures, microstructure, physical, and mechanical properties. Stress-intensity factor
K
1C
at the apex of the crack is growing continuously with an increase in the tempering temperature from 200 to 620°C. This indicates that
K
1C
is a structural-sensitive parameter, which depends on the steel microstructure and submicrostructure, the fracture mechanism that occurs under these structural conditions, the internal stress level, and the existence of microdefects and microcracks. The linear correlation dependence is found between the coefficient
K
1C
and the transverse velocity
V
transv
. The obtained results reveal that the acoustic method can be used to quickly and efficiently estimate the crack resistance of the thermostrengthened steel without the recourse to labor-consuming mechanical tests and computations of the
K
1C
value. |
doi_str_mv | 10.1134/S0031918X17100131 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1954939708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954939708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-54692ab8ceb9d3d1ed73f24a9d677a7b9a2e0315e348aa9a6e40b2a767aa11d93</originalsourceid><addsrcrecordid>eNp1kc9O3DAQxi0EEgvtA_RmqdcNeGInWR-rFW2RoD0AErdo4ky63uZfbQeJG-_AW_SxeBKc3R6QKi625pvf90kzw9gnEGcAUp3fCCFBw-oeChACJBywBWRZluSgxSFbzO1k7h-zE--3Qiilcrlgf9dDNzraUO_tA3HssX301vOh4Y1DEyZHfsk7a9zgg5t2wjJiNR83ETTY7oqOzAb7XTm6YSQXLHneDI6HDXF6wHbCYId-zp0VE7N_85htfcDe0Kx3VNupSwy6KoJr9_L0_MPG53rgPhC1H9hRg62nj__-U3b39eJ2_T25-vntcv3lKjEykyHJVK5TrFaGKl3LGqguZJMq1HVeFFhUGlOKy8hIqhWixpyUqFIs8gIRoNbylH3e58ZJ_kzkQ7kdJhcX40vQmdJSF2IVKdhT82a8o6Ycne3QPZYgyvkk5X8niZ507_GR7X-Re5P8rukVWU2TuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954939708</pqid></control><display><type>article</type><title>Comprehensive analysis of fractures, microstructure, and physical and mechanical properties for the evaluation of the crack resistance of medium-carbon Cr–Ni–Mo steel</title><source>Springer Link</source><creator>Vorob’ev, R. A. ; Dubinskii, V. N. ; Evstifeeva, V. V.</creator><creatorcontrib>Vorob’ev, R. A. ; Dubinskii, V. N. ; Evstifeeva, V. V.</creatorcontrib><description>The crack resistance of the 38CrNi3MoV (34NiCrMoV14—5. 35NiCrMoV12—5) tempered steel (at various tempering temperatures) has been estimated based on a comprehensive study of the steel fractures, microstructure, physical, and mechanical properties. Stress-intensity factor
K
1C
at the apex of the crack is growing continuously with an increase in the tempering temperature from 200 to 620°C. This indicates that
K
1C
is a structural-sensitive parameter, which depends on the steel microstructure and submicrostructure, the fracture mechanism that occurs under these structural conditions, the internal stress level, and the existence of microdefects and microcracks. The linear correlation dependence is found between the coefficient
K
1C
and the transverse velocity
V
transv
. The obtained results reveal that the acoustic method can be used to quickly and efficiently estimate the crack resistance of the thermostrengthened steel without the recourse to labor-consuming mechanical tests and computations of the
K
1C
value.</description><identifier>ISSN: 0031-918X</identifier><identifier>EISSN: 1555-6190</identifier><identifier>DOI: 10.1134/S0031918X17100131</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry and Materials Science ; Chromium ; Crack propagation ; Fracture mechanics ; Materials Science ; Mechanical properties ; Mechanical tests ; Metallic Materials ; Microcracks ; Microstructure ; Nickel ; Residual stress ; Strength and Plasticity ; Tempering</subject><ispartof>Physics of metals and metallography, 2017-10, Vol.118 (10), p.1015-1021</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Physics of Metals and Metallography is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-54692ab8ceb9d3d1ed73f24a9d677a7b9a2e0315e348aa9a6e40b2a767aa11d93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Vorob’ev, R. A.</creatorcontrib><creatorcontrib>Dubinskii, V. N.</creatorcontrib><creatorcontrib>Evstifeeva, V. V.</creatorcontrib><title>Comprehensive analysis of fractures, microstructure, and physical and mechanical properties for the evaluation of the crack resistance of medium-carbon Cr–Ni–Mo steel</title><title>Physics of metals and metallography</title><addtitle>Phys. Metals Metallogr</addtitle><description>The crack resistance of the 38CrNi3MoV (34NiCrMoV14—5. 35NiCrMoV12—5) tempered steel (at various tempering temperatures) has been estimated based on a comprehensive study of the steel fractures, microstructure, physical, and mechanical properties. Stress-intensity factor
K
1C
at the apex of the crack is growing continuously with an increase in the tempering temperature from 200 to 620°C. This indicates that
K
1C
is a structural-sensitive parameter, which depends on the steel microstructure and submicrostructure, the fracture mechanism that occurs under these structural conditions, the internal stress level, and the existence of microdefects and microcracks. The linear correlation dependence is found between the coefficient
K
1C
and the transverse velocity
V
transv
. The obtained results reveal that the acoustic method can be used to quickly and efficiently estimate the crack resistance of the thermostrengthened steel without the recourse to labor-consuming mechanical tests and computations of the
K
1C
value.</description><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Crack propagation</subject><subject>Fracture mechanics</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Metallic Materials</subject><subject>Microcracks</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Residual stress</subject><subject>Strength and Plasticity</subject><subject>Tempering</subject><issn>0031-918X</issn><issn>1555-6190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc9O3DAQxi0EEgvtA_RmqdcNeGInWR-rFW2RoD0AErdo4ky63uZfbQeJG-_AW_SxeBKc3R6QKi625pvf90kzw9gnEGcAUp3fCCFBw-oeChACJBywBWRZluSgxSFbzO1k7h-zE--3Qiilcrlgf9dDNzraUO_tA3HssX301vOh4Y1DEyZHfsk7a9zgg5t2wjJiNR83ETTY7oqOzAb7XTm6YSQXLHneDI6HDXF6wHbCYId-zp0VE7N_85htfcDe0Kx3VNupSwy6KoJr9_L0_MPG53rgPhC1H9hRg62nj__-U3b39eJ2_T25-vntcv3lKjEykyHJVK5TrFaGKl3LGqguZJMq1HVeFFhUGlOKy8hIqhWixpyUqFIs8gIRoNbylH3e58ZJ_kzkQ7kdJhcX40vQmdJSF2IVKdhT82a8o6Ycne3QPZYgyvkk5X8niZ507_GR7X-Re5P8rukVWU2TuA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Vorob’ev, R. A.</creator><creator>Dubinskii, V. N.</creator><creator>Evstifeeva, V. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171001</creationdate><title>Comprehensive analysis of fractures, microstructure, and physical and mechanical properties for the evaluation of the crack resistance of medium-carbon Cr–Ni–Mo steel</title><author>Vorob’ev, R. A. ; Dubinskii, V. N. ; Evstifeeva, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-54692ab8ceb9d3d1ed73f24a9d677a7b9a2e0315e348aa9a6e40b2a767aa11d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Crack propagation</topic><topic>Fracture mechanics</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Metallic Materials</topic><topic>Microcracks</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Residual stress</topic><topic>Strength and Plasticity</topic><topic>Tempering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorob’ev, R. A.</creatorcontrib><creatorcontrib>Dubinskii, V. N.</creatorcontrib><creatorcontrib>Evstifeeva, V. V.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Physics of metals and metallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorob’ev, R. A.</au><au>Dubinskii, V. N.</au><au>Evstifeeva, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive analysis of fractures, microstructure, and physical and mechanical properties for the evaluation of the crack resistance of medium-carbon Cr–Ni–Mo steel</atitle><jtitle>Physics of metals and metallography</jtitle><stitle>Phys. Metals Metallogr</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>118</volume><issue>10</issue><spage>1015</spage><epage>1021</epage><pages>1015-1021</pages><issn>0031-918X</issn><eissn>1555-6190</eissn><abstract>The crack resistance of the 38CrNi3MoV (34NiCrMoV14—5. 35NiCrMoV12—5) tempered steel (at various tempering temperatures) has been estimated based on a comprehensive study of the steel fractures, microstructure, physical, and mechanical properties. Stress-intensity factor
K
1C
at the apex of the crack is growing continuously with an increase in the tempering temperature from 200 to 620°C. This indicates that
K
1C
is a structural-sensitive parameter, which depends on the steel microstructure and submicrostructure, the fracture mechanism that occurs under these structural conditions, the internal stress level, and the existence of microdefects and microcracks. The linear correlation dependence is found between the coefficient
K
1C
and the transverse velocity
V
transv
. The obtained results reveal that the acoustic method can be used to quickly and efficiently estimate the crack resistance of the thermostrengthened steel without the recourse to labor-consuming mechanical tests and computations of the
K
1C
value.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0031918X17100131</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-918X |
ispartof | Physics of metals and metallography, 2017-10, Vol.118 (10), p.1015-1021 |
issn | 0031-918X 1555-6190 |
language | eng |
recordid | cdi_proquest_journals_1954939708 |
source | Springer Link |
subjects | Chemistry and Materials Science Chromium Crack propagation Fracture mechanics Materials Science Mechanical properties Mechanical tests Metallic Materials Microcracks Microstructure Nickel Residual stress Strength and Plasticity Tempering |
title | Comprehensive analysis of fractures, microstructure, and physical and mechanical properties for the evaluation of the crack resistance of medium-carbon Cr–Ni–Mo steel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20analysis%20of%20fractures,%20microstructure,%20and%20physical%20and%20mechanical%20properties%20for%20the%20evaluation%20of%20the%20crack%20resistance%20of%20medium-carbon%20Cr%E2%80%93Ni%E2%80%93Mo%20steel&rft.jtitle=Physics%20of%20metals%20and%20metallography&rft.au=Vorob%E2%80%99ev,%20R.%20A.&rft.date=2017-10-01&rft.volume=118&rft.issue=10&rft.spage=1015&rft.epage=1021&rft.pages=1015-1021&rft.issn=0031-918X&rft.eissn=1555-6190&rft_id=info:doi/10.1134/S0031918X17100131&rft_dat=%3Cproquest_cross%3E1954939708%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-54692ab8ceb9d3d1ed73f24a9d677a7b9a2e0315e348aa9a6e40b2a767aa11d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1954939708&rft_id=info:pmid/&rfr_iscdi=true |