Loading…
Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells
Organic–inorganic hybrid halide perovskite solar cells (PSCs) have recently drawn enormous attentions due to their impressive performance (>22%) and low temperature solution processability (
Saved in:
Published in: | Advanced energy materials 2017-10, Vol.7 (20), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23 |
---|---|
cites | cdi_FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23 |
container_end_page | n/a |
container_issue | 20 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 7 |
creator | Bu, Tongle Wu, Lan Liu, Xueping Yang, Xiaokun Zhou, Peng Yu, Xinxin Qin, Tianshi Shi, Jiangjian Wang, Song Li, Saisai Ku, Zhiliang Peng, Yong Huang, Fuzhi Meng, Qingbo Cheng, Yi‐Bing Zhong, Jie |
description | Organic–inorganic hybrid halide perovskite solar cells (PSCs) have recently drawn enormous attentions due to their impressive performance (>22%) and low temperature solution processability ( |
doi_str_mv | 10.1002/aenm.201700576 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1955043865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1955043865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23</originalsourceid><addsrcrecordid>eNqFkM9PwjAUxxujiQS5em7iedgf68qOhCCSgJigV5tue8Xi6LAd4PzrHcHg0Xf5vsPn-17yQeiWkj4lhN1rcJs-I1QSImRygTo0oXGUDGJyed45u0a9ENaknTilhPMOels2DvzK5njqavBG54AX29pu7LeubeXwwdbveOIBHF5W5R5cjcduZR2At26FrcNz-wUFfgZf7cOHreHIaY9HUJbhBl0ZXQbo_WYXvT6MX0aP0WwxmY6GsyjnIk4iCRxkKoVkmcwLKfMYtEiILIxhccEIpKCLnCRFJpjhfJClQmSGQ8FlxrVhvIvuTne3vvrcQajVutp5175UtGVJzAeJaKn-icp9FYIHo7bebrRvFCXqqFEdNaqzxraQngoHW0LzD62G46f5X_cHnrt3lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955043865</pqid></control><display><type>article</type><title>Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells</title><source>Wiley</source><creator>Bu, Tongle ; Wu, Lan ; Liu, Xueping ; Yang, Xiaokun ; Zhou, Peng ; Yu, Xinxin ; Qin, Tianshi ; Shi, Jiangjian ; Wang, Song ; Li, Saisai ; Ku, Zhiliang ; Peng, Yong ; Huang, Fuzhi ; Meng, Qingbo ; Cheng, Yi‐Bing ; Zhong, Jie</creator><creatorcontrib>Bu, Tongle ; Wu, Lan ; Liu, Xueping ; Yang, Xiaokun ; Zhou, Peng ; Yu, Xinxin ; Qin, Tianshi ; Shi, Jiangjian ; Wang, Song ; Li, Saisai ; Ku, Zhiliang ; Peng, Yong ; Huang, Fuzhi ; Meng, Qingbo ; Cheng, Yi‐Bing ; Zhong, Jie</creatorcontrib><description>Organic–inorganic hybrid halide perovskite solar cells (PSCs) have recently drawn enormous attentions due to their impressive performance (>22%) and low temperature solution processability (<150 °C). Current solution process involves application of a large amount of toxic solvents, such as chlorobenzene, which is heavily employed in both the perovskite layer and the hole transport layer (HTL) deposition. Herein, this study employs green solvent of ethyl acetate for engineering efficient perovskite and HTL layers, which enables a synergic interface (perovskite/HTL) optimization. A champion efficiency of 19.43% is obtained for small cells (0.16 cm2 with mask) and over 14% for large size modules (5 × 5 cm2). The PSCs prepared from the green solvent engineering demonstrate superior performance on both efficiency and stability over their chlorobenzene counterparts. These enhancements are ascribed to the in situ inhibition on carrier recombination induced by interfacial defects during the solution processing, which enables about 2/3 reduction of calculated recombination rate. Thus, the green solvent route shows the great potential toward environmental‐friendly manufacturing.
The widely used toxic chlorobenzene for the perovskite and Spiro‐OMeTAD film processing is replaced by a green solvent of ethyl acetate. This green solvent engineering produces pinhole‐free films of both the perovskite and Spiro‐OMeTAD hole transport layer. Via the synergic interface optimization, an impressive power conversion efficiency up to 19.43% is achieved.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201700576</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carrier recombination ; Ethyl acetate ; green solvents ; interface optimization ; large size modules ; mixed perovskite ; Optimization ; Photovoltaic cells ; Solar cells ; Solvents ; Spiro‐OMeTAD</subject><ispartof>Advanced energy materials, 2017-10, Vol.7 (20), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23</citedby><cites>FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bu, Tongle</creatorcontrib><creatorcontrib>Wu, Lan</creatorcontrib><creatorcontrib>Liu, Xueping</creatorcontrib><creatorcontrib>Yang, Xiaokun</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Yu, Xinxin</creatorcontrib><creatorcontrib>Qin, Tianshi</creatorcontrib><creatorcontrib>Shi, Jiangjian</creatorcontrib><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Li, Saisai</creatorcontrib><creatorcontrib>Ku, Zhiliang</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Huang, Fuzhi</creatorcontrib><creatorcontrib>Meng, Qingbo</creatorcontrib><creatorcontrib>Cheng, Yi‐Bing</creatorcontrib><creatorcontrib>Zhong, Jie</creatorcontrib><title>Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells</title><title>Advanced energy materials</title><description>Organic–inorganic hybrid halide perovskite solar cells (PSCs) have recently drawn enormous attentions due to their impressive performance (>22%) and low temperature solution processability (<150 °C). Current solution process involves application of a large amount of toxic solvents, such as chlorobenzene, which is heavily employed in both the perovskite layer and the hole transport layer (HTL) deposition. Herein, this study employs green solvent of ethyl acetate for engineering efficient perovskite and HTL layers, which enables a synergic interface (perovskite/HTL) optimization. A champion efficiency of 19.43% is obtained for small cells (0.16 cm2 with mask) and over 14% for large size modules (5 × 5 cm2). The PSCs prepared from the green solvent engineering demonstrate superior performance on both efficiency and stability over their chlorobenzene counterparts. These enhancements are ascribed to the in situ inhibition on carrier recombination induced by interfacial defects during the solution processing, which enables about 2/3 reduction of calculated recombination rate. Thus, the green solvent route shows the great potential toward environmental‐friendly manufacturing.
The widely used toxic chlorobenzene for the perovskite and Spiro‐OMeTAD film processing is replaced by a green solvent of ethyl acetate. This green solvent engineering produces pinhole‐free films of both the perovskite and Spiro‐OMeTAD hole transport layer. Via the synergic interface optimization, an impressive power conversion efficiency up to 19.43% is achieved.</description><subject>Carrier recombination</subject><subject>Ethyl acetate</subject><subject>green solvents</subject><subject>interface optimization</subject><subject>large size modules</subject><subject>mixed perovskite</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Solvents</subject><subject>Spiro‐OMeTAD</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwjAUxxujiQS5em7iedgf68qOhCCSgJigV5tue8Xi6LAd4PzrHcHg0Xf5vsPn-17yQeiWkj4lhN1rcJs-I1QSImRygTo0oXGUDGJyed45u0a9ENaknTilhPMOels2DvzK5njqavBG54AX29pu7LeubeXwwdbveOIBHF5W5R5cjcduZR2At26FrcNz-wUFfgZf7cOHreHIaY9HUJbhBl0ZXQbo_WYXvT6MX0aP0WwxmY6GsyjnIk4iCRxkKoVkmcwLKfMYtEiILIxhccEIpKCLnCRFJpjhfJClQmSGQ8FlxrVhvIvuTne3vvrcQajVutp5175UtGVJzAeJaKn-icp9FYIHo7bebrRvFCXqqFEdNaqzxraQngoHW0LzD62G46f5X_cHnrt3lA</recordid><startdate>20171025</startdate><enddate>20171025</enddate><creator>Bu, Tongle</creator><creator>Wu, Lan</creator><creator>Liu, Xueping</creator><creator>Yang, Xiaokun</creator><creator>Zhou, Peng</creator><creator>Yu, Xinxin</creator><creator>Qin, Tianshi</creator><creator>Shi, Jiangjian</creator><creator>Wang, Song</creator><creator>Li, Saisai</creator><creator>Ku, Zhiliang</creator><creator>Peng, Yong</creator><creator>Huang, Fuzhi</creator><creator>Meng, Qingbo</creator><creator>Cheng, Yi‐Bing</creator><creator>Zhong, Jie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171025</creationdate><title>Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells</title><author>Bu, Tongle ; Wu, Lan ; Liu, Xueping ; Yang, Xiaokun ; Zhou, Peng ; Yu, Xinxin ; Qin, Tianshi ; Shi, Jiangjian ; Wang, Song ; Li, Saisai ; Ku, Zhiliang ; Peng, Yong ; Huang, Fuzhi ; Meng, Qingbo ; Cheng, Yi‐Bing ; Zhong, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carrier recombination</topic><topic>Ethyl acetate</topic><topic>green solvents</topic><topic>interface optimization</topic><topic>large size modules</topic><topic>mixed perovskite</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Solvents</topic><topic>Spiro‐OMeTAD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Tongle</creatorcontrib><creatorcontrib>Wu, Lan</creatorcontrib><creatorcontrib>Liu, Xueping</creatorcontrib><creatorcontrib>Yang, Xiaokun</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Yu, Xinxin</creatorcontrib><creatorcontrib>Qin, Tianshi</creatorcontrib><creatorcontrib>Shi, Jiangjian</creatorcontrib><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Li, Saisai</creatorcontrib><creatorcontrib>Ku, Zhiliang</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Huang, Fuzhi</creatorcontrib><creatorcontrib>Meng, Qingbo</creatorcontrib><creatorcontrib>Cheng, Yi‐Bing</creatorcontrib><creatorcontrib>Zhong, Jie</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Tongle</au><au>Wu, Lan</au><au>Liu, Xueping</au><au>Yang, Xiaokun</au><au>Zhou, Peng</au><au>Yu, Xinxin</au><au>Qin, Tianshi</au><au>Shi, Jiangjian</au><au>Wang, Song</au><au>Li, Saisai</au><au>Ku, Zhiliang</au><au>Peng, Yong</au><au>Huang, Fuzhi</au><au>Meng, Qingbo</au><au>Cheng, Yi‐Bing</au><au>Zhong, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2017-10-25</date><risdate>2017</risdate><volume>7</volume><issue>20</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Organic–inorganic hybrid halide perovskite solar cells (PSCs) have recently drawn enormous attentions due to their impressive performance (>22%) and low temperature solution processability (<150 °C). Current solution process involves application of a large amount of toxic solvents, such as chlorobenzene, which is heavily employed in both the perovskite layer and the hole transport layer (HTL) deposition. Herein, this study employs green solvent of ethyl acetate for engineering efficient perovskite and HTL layers, which enables a synergic interface (perovskite/HTL) optimization. A champion efficiency of 19.43% is obtained for small cells (0.16 cm2 with mask) and over 14% for large size modules (5 × 5 cm2). The PSCs prepared from the green solvent engineering demonstrate superior performance on both efficiency and stability over their chlorobenzene counterparts. These enhancements are ascribed to the in situ inhibition on carrier recombination induced by interfacial defects during the solution processing, which enables about 2/3 reduction of calculated recombination rate. Thus, the green solvent route shows the great potential toward environmental‐friendly manufacturing.
The widely used toxic chlorobenzene for the perovskite and Spiro‐OMeTAD film processing is replaced by a green solvent of ethyl acetate. This green solvent engineering produces pinhole‐free films of both the perovskite and Spiro‐OMeTAD hole transport layer. Via the synergic interface optimization, an impressive power conversion efficiency up to 19.43% is achieved.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201700576</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2017-10, Vol.7 (20), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_1955043865 |
source | Wiley |
subjects | Carrier recombination Ethyl acetate green solvents interface optimization large size modules mixed perovskite Optimization Photovoltaic cells Solar cells Solvents Spiro‐OMeTAD |
title | Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergic%20Interface%20Optimization%20with%20Green%20Solvent%20Engineering%20in%20Mixed%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Bu,%20Tongle&rft.date=2017-10-25&rft.volume=7&rft.issue=20&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201700576&rft_dat=%3Cproquest_cross%3E1955043865%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1955043865&rft_id=info:pmid/&rfr_iscdi=true |