Loading…

Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells

Organic–inorganic hybrid halide perovskite solar cells (PSCs) have recently drawn enormous attentions due to their impressive performance (>22%) and low temperature solution processability (

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2017-10, Vol.7 (20), p.n/a
Main Authors: Bu, Tongle, Wu, Lan, Liu, Xueping, Yang, Xiaokun, Zhou, Peng, Yu, Xinxin, Qin, Tianshi, Shi, Jiangjian, Wang, Song, Li, Saisai, Ku, Zhiliang, Peng, Yong, Huang, Fuzhi, Meng, Qingbo, Cheng, Yi‐Bing, Zhong, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23
cites cdi_FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23
container_end_page n/a
container_issue 20
container_start_page
container_title Advanced energy materials
container_volume 7
creator Bu, Tongle
Wu, Lan
Liu, Xueping
Yang, Xiaokun
Zhou, Peng
Yu, Xinxin
Qin, Tianshi
Shi, Jiangjian
Wang, Song
Li, Saisai
Ku, Zhiliang
Peng, Yong
Huang, Fuzhi
Meng, Qingbo
Cheng, Yi‐Bing
Zhong, Jie
description Organic–inorganic hybrid halide perovskite solar cells (PSCs) have recently drawn enormous attentions due to their impressive performance (>22%) and low temperature solution processability (
doi_str_mv 10.1002/aenm.201700576
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1955043865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1955043865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23</originalsourceid><addsrcrecordid>eNqFkM9PwjAUxxujiQS5em7iedgf68qOhCCSgJigV5tue8Xi6LAd4PzrHcHg0Xf5vsPn-17yQeiWkj4lhN1rcJs-I1QSImRygTo0oXGUDGJyed45u0a9ENaknTilhPMOels2DvzK5njqavBG54AX29pu7LeubeXwwdbveOIBHF5W5R5cjcduZR2At26FrcNz-wUFfgZf7cOHreHIaY9HUJbhBl0ZXQbo_WYXvT6MX0aP0WwxmY6GsyjnIk4iCRxkKoVkmcwLKfMYtEiILIxhccEIpKCLnCRFJpjhfJClQmSGQ8FlxrVhvIvuTne3vvrcQajVutp5175UtGVJzAeJaKn-icp9FYIHo7bebrRvFCXqqFEdNaqzxraQngoHW0LzD62G46f5X_cHnrt3lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955043865</pqid></control><display><type>article</type><title>Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells</title><source>Wiley</source><creator>Bu, Tongle ; Wu, Lan ; Liu, Xueping ; Yang, Xiaokun ; Zhou, Peng ; Yu, Xinxin ; Qin, Tianshi ; Shi, Jiangjian ; Wang, Song ; Li, Saisai ; Ku, Zhiliang ; Peng, Yong ; Huang, Fuzhi ; Meng, Qingbo ; Cheng, Yi‐Bing ; Zhong, Jie</creator><creatorcontrib>Bu, Tongle ; Wu, Lan ; Liu, Xueping ; Yang, Xiaokun ; Zhou, Peng ; Yu, Xinxin ; Qin, Tianshi ; Shi, Jiangjian ; Wang, Song ; Li, Saisai ; Ku, Zhiliang ; Peng, Yong ; Huang, Fuzhi ; Meng, Qingbo ; Cheng, Yi‐Bing ; Zhong, Jie</creatorcontrib><description>Organic–inorganic hybrid halide perovskite solar cells (PSCs) have recently drawn enormous attentions due to their impressive performance (&gt;22%) and low temperature solution processability (&lt;150 °C). Current solution process involves application of a large amount of toxic solvents, such as chlorobenzene, which is heavily employed in both the perovskite layer and the hole transport layer (HTL) deposition. Herein, this study employs green solvent of ethyl acetate for engineering efficient perovskite and HTL layers, which enables a synergic interface (perovskite/HTL) optimization. A champion efficiency of 19.43% is obtained for small cells (0.16 cm2 with mask) and over 14% for large size modules (5 × 5 cm2). The PSCs prepared from the green solvent engineering demonstrate superior performance on both efficiency and stability over their chlorobenzene counterparts. These enhancements are ascribed to the in situ inhibition on carrier recombination induced by interfacial defects during the solution processing, which enables about 2/3 reduction of calculated recombination rate. Thus, the green solvent route shows the great potential toward environmental‐friendly manufacturing. The widely used toxic chlorobenzene for the perovskite and Spiro‐OMeTAD film processing is replaced by a green solvent of ethyl acetate. This green solvent engineering produces pinhole‐free films of both the perovskite and Spiro‐OMeTAD hole transport layer. Via the synergic interface optimization, an impressive power conversion efficiency up to 19.43% is achieved.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201700576</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carrier recombination ; Ethyl acetate ; green solvents ; interface optimization ; large size modules ; mixed perovskite ; Optimization ; Photovoltaic cells ; Solar cells ; Solvents ; Spiro‐OMeTAD</subject><ispartof>Advanced energy materials, 2017-10, Vol.7 (20), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23</citedby><cites>FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bu, Tongle</creatorcontrib><creatorcontrib>Wu, Lan</creatorcontrib><creatorcontrib>Liu, Xueping</creatorcontrib><creatorcontrib>Yang, Xiaokun</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Yu, Xinxin</creatorcontrib><creatorcontrib>Qin, Tianshi</creatorcontrib><creatorcontrib>Shi, Jiangjian</creatorcontrib><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Li, Saisai</creatorcontrib><creatorcontrib>Ku, Zhiliang</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Huang, Fuzhi</creatorcontrib><creatorcontrib>Meng, Qingbo</creatorcontrib><creatorcontrib>Cheng, Yi‐Bing</creatorcontrib><creatorcontrib>Zhong, Jie</creatorcontrib><title>Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells</title><title>Advanced energy materials</title><description>Organic–inorganic hybrid halide perovskite solar cells (PSCs) have recently drawn enormous attentions due to their impressive performance (&gt;22%) and low temperature solution processability (&lt;150 °C). Current solution process involves application of a large amount of toxic solvents, such as chlorobenzene, which is heavily employed in both the perovskite layer and the hole transport layer (HTL) deposition. Herein, this study employs green solvent of ethyl acetate for engineering efficient perovskite and HTL layers, which enables a synergic interface (perovskite/HTL) optimization. A champion efficiency of 19.43% is obtained for small cells (0.16 cm2 with mask) and over 14% for large size modules (5 × 5 cm2). The PSCs prepared from the green solvent engineering demonstrate superior performance on both efficiency and stability over their chlorobenzene counterparts. These enhancements are ascribed to the in situ inhibition on carrier recombination induced by interfacial defects during the solution processing, which enables about 2/3 reduction of calculated recombination rate. Thus, the green solvent route shows the great potential toward environmental‐friendly manufacturing. The widely used toxic chlorobenzene for the perovskite and Spiro‐OMeTAD film processing is replaced by a green solvent of ethyl acetate. This green solvent engineering produces pinhole‐free films of both the perovskite and Spiro‐OMeTAD hole transport layer. Via the synergic interface optimization, an impressive power conversion efficiency up to 19.43% is achieved.</description><subject>Carrier recombination</subject><subject>Ethyl acetate</subject><subject>green solvents</subject><subject>interface optimization</subject><subject>large size modules</subject><subject>mixed perovskite</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Solvents</subject><subject>Spiro‐OMeTAD</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwjAUxxujiQS5em7iedgf68qOhCCSgJigV5tue8Xi6LAd4PzrHcHg0Xf5vsPn-17yQeiWkj4lhN1rcJs-I1QSImRygTo0oXGUDGJyed45u0a9ENaknTilhPMOels2DvzK5njqavBG54AX29pu7LeubeXwwdbveOIBHF5W5R5cjcduZR2At26FrcNz-wUFfgZf7cOHreHIaY9HUJbhBl0ZXQbo_WYXvT6MX0aP0WwxmY6GsyjnIk4iCRxkKoVkmcwLKfMYtEiILIxhccEIpKCLnCRFJpjhfJClQmSGQ8FlxrVhvIvuTne3vvrcQajVutp5175UtGVJzAeJaKn-icp9FYIHo7bebrRvFCXqqFEdNaqzxraQngoHW0LzD62G46f5X_cHnrt3lA</recordid><startdate>20171025</startdate><enddate>20171025</enddate><creator>Bu, Tongle</creator><creator>Wu, Lan</creator><creator>Liu, Xueping</creator><creator>Yang, Xiaokun</creator><creator>Zhou, Peng</creator><creator>Yu, Xinxin</creator><creator>Qin, Tianshi</creator><creator>Shi, Jiangjian</creator><creator>Wang, Song</creator><creator>Li, Saisai</creator><creator>Ku, Zhiliang</creator><creator>Peng, Yong</creator><creator>Huang, Fuzhi</creator><creator>Meng, Qingbo</creator><creator>Cheng, Yi‐Bing</creator><creator>Zhong, Jie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171025</creationdate><title>Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells</title><author>Bu, Tongle ; Wu, Lan ; Liu, Xueping ; Yang, Xiaokun ; Zhou, Peng ; Yu, Xinxin ; Qin, Tianshi ; Shi, Jiangjian ; Wang, Song ; Li, Saisai ; Ku, Zhiliang ; Peng, Yong ; Huang, Fuzhi ; Meng, Qingbo ; Cheng, Yi‐Bing ; Zhong, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carrier recombination</topic><topic>Ethyl acetate</topic><topic>green solvents</topic><topic>interface optimization</topic><topic>large size modules</topic><topic>mixed perovskite</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Solvents</topic><topic>Spiro‐OMeTAD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Tongle</creatorcontrib><creatorcontrib>Wu, Lan</creatorcontrib><creatorcontrib>Liu, Xueping</creatorcontrib><creatorcontrib>Yang, Xiaokun</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Yu, Xinxin</creatorcontrib><creatorcontrib>Qin, Tianshi</creatorcontrib><creatorcontrib>Shi, Jiangjian</creatorcontrib><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Li, Saisai</creatorcontrib><creatorcontrib>Ku, Zhiliang</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Huang, Fuzhi</creatorcontrib><creatorcontrib>Meng, Qingbo</creatorcontrib><creatorcontrib>Cheng, Yi‐Bing</creatorcontrib><creatorcontrib>Zhong, Jie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Tongle</au><au>Wu, Lan</au><au>Liu, Xueping</au><au>Yang, Xiaokun</au><au>Zhou, Peng</au><au>Yu, Xinxin</au><au>Qin, Tianshi</au><au>Shi, Jiangjian</au><au>Wang, Song</au><au>Li, Saisai</au><au>Ku, Zhiliang</au><au>Peng, Yong</au><au>Huang, Fuzhi</au><au>Meng, Qingbo</au><au>Cheng, Yi‐Bing</au><au>Zhong, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2017-10-25</date><risdate>2017</risdate><volume>7</volume><issue>20</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Organic–inorganic hybrid halide perovskite solar cells (PSCs) have recently drawn enormous attentions due to their impressive performance (&gt;22%) and low temperature solution processability (&lt;150 °C). Current solution process involves application of a large amount of toxic solvents, such as chlorobenzene, which is heavily employed in both the perovskite layer and the hole transport layer (HTL) deposition. Herein, this study employs green solvent of ethyl acetate for engineering efficient perovskite and HTL layers, which enables a synergic interface (perovskite/HTL) optimization. A champion efficiency of 19.43% is obtained for small cells (0.16 cm2 with mask) and over 14% for large size modules (5 × 5 cm2). The PSCs prepared from the green solvent engineering demonstrate superior performance on both efficiency and stability over their chlorobenzene counterparts. These enhancements are ascribed to the in situ inhibition on carrier recombination induced by interfacial defects during the solution processing, which enables about 2/3 reduction of calculated recombination rate. Thus, the green solvent route shows the great potential toward environmental‐friendly manufacturing. The widely used toxic chlorobenzene for the perovskite and Spiro‐OMeTAD film processing is replaced by a green solvent of ethyl acetate. This green solvent engineering produces pinhole‐free films of both the perovskite and Spiro‐OMeTAD hole transport layer. Via the synergic interface optimization, an impressive power conversion efficiency up to 19.43% is achieved.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201700576</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2017-10, Vol.7 (20), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_1955043865
source Wiley
subjects Carrier recombination
Ethyl acetate
green solvents
interface optimization
large size modules
mixed perovskite
Optimization
Photovoltaic cells
Solar cells
Solvents
Spiro‐OMeTAD
title Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergic%20Interface%20Optimization%20with%20Green%20Solvent%20Engineering%20in%20Mixed%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Bu,%20Tongle&rft.date=2017-10-25&rft.volume=7&rft.issue=20&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201700576&rft_dat=%3Cproquest_cross%3E1955043865%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3546-7e3e797572b7cd77c4ea5607dff24d20e9eadc06db52f338b955bf3ed37b3af23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1955043865&rft_id=info:pmid/&rfr_iscdi=true