Loading…

Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy

In this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2017-07, Vol.321, p.309-320
Main Authors: Zuleta, A.A., Correa, E., Castaño, J.G., Echeverría, F., Baron-Wiecheć, A., Skeldon, P., Thompson, G.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-776eaa7072454be7bb62f3ef9bb5b14478dd2dd5850e7a71afa6e3afca879fe43
cites cdi_FETCH-LOGICAL-c454t-776eaa7072454be7bb62f3ef9bb5b14478dd2dd5850e7a71afa6e3afca879fe43
container_end_page 320
container_issue
container_start_page 309
container_title Surface & coatings technology
container_volume 321
creator Zuleta, A.A.
Correa, E.
Castaño, J.G.
Echeverría, F.
Baron-Wiecheć, A.
Skeldon, P.
Thompson, G.E.
description In this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the kinetics of the electroless Ni-P deposition process on magnesium; (ii) the morphological and chemical evolution of the coating on both magnesium and the AZ31B alloy. For these purposes, gravimetric measurements, scanning electron microscopy (SEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and open-circuit potential (OCP) measurements were employed. It is shown that a relatively rough substrate promotes the rapid formation of the Ni-P coating on the substrate surface in comparison with smoother substrates. Furthermore, the presence of fluoride ions derived from the NH4HF2 reagent in the electroless Ni-P plating bath leads to formation of MgF2 a few seconds after immersion in the bath. Subsequently, crystals of NaMgF3, with a cubic morphology, are developed, which later become embedded in the Ni-P matrix. The presence of fluorine species passivates the substrate during coating formation and hence restricts the decomposition of the electroless Ni-P plating bath, which can occur due to release of Mg2+ ions. Finally, according to gravimetric measurements, SEM and XRD, the plating process is initially faster on magnesium than on the alloy. •A chrome-free, alkaline electroless nickel coating is developed for Mg and AZ31B.•A rougher surface promotes the more rapid formation of the Ni-P coating.•The presence of fluoride and sodium ions promotes the formation of NaMgF3 crystals.•The presence of zinc enriched layer at the surface of AZ31B alloy is demonstrated.•A schematic overview of the formation of Ni-P coating on Mg and AZ31B is proposed.
doi_str_mv 10.1016/j.surfcoat.2017.04.059
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1955051445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897217304048</els_id><sourcerecordid>1955051445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-776eaa7072454be7bb62f3ef9bb5b14478dd2dd5850e7a71afa6e3afca879fe43</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BQl4bk3apGlvruI_WFRQL15C2kzW1G6zJq2w396UVfDmaZjHm_eYH0KnlKSU0OK8TcPoTePUkGaEipSwlPBqD81oKaokz5nYRzOScZGUlcgO0VEILSHRWbEZqp-HUW-xM3h4B2ycX6vBun4SVPehOtsDhg6awbsOQsAPNnnCU5ftVzj61mrVQ7DjGqte48VbTi__al3ntsfowKguwMnPnKPXm-uXq7tk-Xh7f7VYJg3jbEiEKEApQUQW1xpEXReZycFUdc1rypgotc605iUnIJSgyqgCcmUaFd80wPI5Otvlbrz7HCEMsnWj72OlpBXnhMcQHl3FztV4F4IHIzferpXfSkrkxFO28pennHhKwmTkGQ8vdocQf_iy4GVoLPQNaOsjH6md_S_iG5oBgzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955051445</pqid></control><display><type>article</type><title>Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy</title><source>ScienceDirect Freedom Collection</source><creator>Zuleta, A.A. ; Correa, E. ; Castaño, J.G. ; Echeverría, F. ; Baron-Wiecheć, A. ; Skeldon, P. ; Thompson, G.E.</creator><creatorcontrib>Zuleta, A.A. ; Correa, E. ; Castaño, J.G. ; Echeverría, F. ; Baron-Wiecheć, A. ; Skeldon, P. ; Thompson, G.E.</creatorcontrib><description>In this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the kinetics of the electroless Ni-P deposition process on magnesium; (ii) the morphological and chemical evolution of the coating on both magnesium and the AZ31B alloy. For these purposes, gravimetric measurements, scanning electron microscopy (SEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and open-circuit potential (OCP) measurements were employed. It is shown that a relatively rough substrate promotes the rapid formation of the Ni-P coating on the substrate surface in comparison with smoother substrates. Furthermore, the presence of fluoride ions derived from the NH4HF2 reagent in the electroless Ni-P plating bath leads to formation of MgF2 a few seconds after immersion in the bath. Subsequently, crystals of NaMgF3, with a cubic morphology, are developed, which later become embedded in the Ni-P matrix. The presence of fluorine species passivates the substrate during coating formation and hence restricts the decomposition of the electroless Ni-P plating bath, which can occur due to release of Mg2+ ions. Finally, according to gravimetric measurements, SEM and XRD, the plating process is initially faster on magnesium than on the alloy. •A chrome-free, alkaline electroless nickel coating is developed for Mg and AZ31B.•A rougher surface promotes the more rapid formation of the Ni-P coating.•The presence of fluoride and sodium ions promotes the formation of NaMgF3 crystals.•The presence of zinc enriched layer at the surface of AZ31B alloy is demonstrated.•A schematic overview of the formation of Ni-P coating on Mg and AZ31B is proposed.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2017.04.059</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Backscattering ; Chemical evolution ; Coating effects ; Coatings grown ; Diffraction ; Electroless coatings ; Electroless plating ; Fluorine ; Gravimetry ; Hexavalent chromium ; Kinetics ; Magnesium ; Magnesium base alloys ; Morphology ; Scanning electron microscopy ; Substrates ; Surface morphology ; X-ray diffraction</subject><ispartof>Surface &amp; coatings technology, 2017-07, Vol.321, p.309-320</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-776eaa7072454be7bb62f3ef9bb5b14478dd2dd5850e7a71afa6e3afca879fe43</citedby><cites>FETCH-LOGICAL-c454t-776eaa7072454be7bb62f3ef9bb5b14478dd2dd5850e7a71afa6e3afca879fe43</cites><orcidid>0000-0002-5431-2603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zuleta, A.A.</creatorcontrib><creatorcontrib>Correa, E.</creatorcontrib><creatorcontrib>Castaño, J.G.</creatorcontrib><creatorcontrib>Echeverría, F.</creatorcontrib><creatorcontrib>Baron-Wiecheć, A.</creatorcontrib><creatorcontrib>Skeldon, P.</creatorcontrib><creatorcontrib>Thompson, G.E.</creatorcontrib><title>Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy</title><title>Surface &amp; coatings technology</title><description>In this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the kinetics of the electroless Ni-P deposition process on magnesium; (ii) the morphological and chemical evolution of the coating on both magnesium and the AZ31B alloy. For these purposes, gravimetric measurements, scanning electron microscopy (SEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and open-circuit potential (OCP) measurements were employed. It is shown that a relatively rough substrate promotes the rapid formation of the Ni-P coating on the substrate surface in comparison with smoother substrates. Furthermore, the presence of fluoride ions derived from the NH4HF2 reagent in the electroless Ni-P plating bath leads to formation of MgF2 a few seconds after immersion in the bath. Subsequently, crystals of NaMgF3, with a cubic morphology, are developed, which later become embedded in the Ni-P matrix. The presence of fluorine species passivates the substrate during coating formation and hence restricts the decomposition of the electroless Ni-P plating bath, which can occur due to release of Mg2+ ions. Finally, according to gravimetric measurements, SEM and XRD, the plating process is initially faster on magnesium than on the alloy. •A chrome-free, alkaline electroless nickel coating is developed for Mg and AZ31B.•A rougher surface promotes the more rapid formation of the Ni-P coating.•The presence of fluoride and sodium ions promotes the formation of NaMgF3 crystals.•The presence of zinc enriched layer at the surface of AZ31B alloy is demonstrated.•A schematic overview of the formation of Ni-P coating on Mg and AZ31B is proposed.</description><subject>Backscattering</subject><subject>Chemical evolution</subject><subject>Coating effects</subject><subject>Coatings grown</subject><subject>Diffraction</subject><subject>Electroless coatings</subject><subject>Electroless plating</subject><subject>Fluorine</subject><subject>Gravimetry</subject><subject>Hexavalent chromium</subject><subject>Kinetics</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Morphology</subject><subject>Scanning electron microscopy</subject><subject>Substrates</subject><subject>Surface morphology</subject><subject>X-ray diffraction</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BQl4bk3apGlvruI_WFRQL15C2kzW1G6zJq2w396UVfDmaZjHm_eYH0KnlKSU0OK8TcPoTePUkGaEipSwlPBqD81oKaokz5nYRzOScZGUlcgO0VEILSHRWbEZqp-HUW-xM3h4B2ycX6vBun4SVPehOtsDhg6awbsOQsAPNnnCU5ftVzj61mrVQ7DjGqte48VbTi__al3ntsfowKguwMnPnKPXm-uXq7tk-Xh7f7VYJg3jbEiEKEApQUQW1xpEXReZycFUdc1rypgotc605iUnIJSgyqgCcmUaFd80wPI5Otvlbrz7HCEMsnWj72OlpBXnhMcQHl3FztV4F4IHIzferpXfSkrkxFO28pennHhKwmTkGQ8vdocQf_iy4GVoLPQNaOsjH6md_S_iG5oBgzM</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Zuleta, A.A.</creator><creator>Correa, E.</creator><creator>Castaño, J.G.</creator><creator>Echeverría, F.</creator><creator>Baron-Wiecheć, A.</creator><creator>Skeldon, P.</creator><creator>Thompson, G.E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5431-2603</orcidid></search><sort><creationdate>20170715</creationdate><title>Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy</title><author>Zuleta, A.A. ; Correa, E. ; Castaño, J.G. ; Echeverría, F. ; Baron-Wiecheć, A. ; Skeldon, P. ; Thompson, G.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-776eaa7072454be7bb62f3ef9bb5b14478dd2dd5850e7a71afa6e3afca879fe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Backscattering</topic><topic>Chemical evolution</topic><topic>Coating effects</topic><topic>Coatings grown</topic><topic>Diffraction</topic><topic>Electroless coatings</topic><topic>Electroless plating</topic><topic>Fluorine</topic><topic>Gravimetry</topic><topic>Hexavalent chromium</topic><topic>Kinetics</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Morphology</topic><topic>Scanning electron microscopy</topic><topic>Substrates</topic><topic>Surface morphology</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuleta, A.A.</creatorcontrib><creatorcontrib>Correa, E.</creatorcontrib><creatorcontrib>Castaño, J.G.</creatorcontrib><creatorcontrib>Echeverría, F.</creatorcontrib><creatorcontrib>Baron-Wiecheć, A.</creatorcontrib><creatorcontrib>Skeldon, P.</creatorcontrib><creatorcontrib>Thompson, G.E.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuleta, A.A.</au><au>Correa, E.</au><au>Castaño, J.G.</au><au>Echeverría, F.</au><au>Baron-Wiecheć, A.</au><au>Skeldon, P.</au><au>Thompson, G.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2017-07-15</date><risdate>2017</risdate><volume>321</volume><spage>309</spage><epage>320</epage><pages>309-320</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>In this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the kinetics of the electroless Ni-P deposition process on magnesium; (ii) the morphological and chemical evolution of the coating on both magnesium and the AZ31B alloy. For these purposes, gravimetric measurements, scanning electron microscopy (SEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and open-circuit potential (OCP) measurements were employed. It is shown that a relatively rough substrate promotes the rapid formation of the Ni-P coating on the substrate surface in comparison with smoother substrates. Furthermore, the presence of fluoride ions derived from the NH4HF2 reagent in the electroless Ni-P plating bath leads to formation of MgF2 a few seconds after immersion in the bath. Subsequently, crystals of NaMgF3, with a cubic morphology, are developed, which later become embedded in the Ni-P matrix. The presence of fluorine species passivates the substrate during coating formation and hence restricts the decomposition of the electroless Ni-P plating bath, which can occur due to release of Mg2+ ions. Finally, according to gravimetric measurements, SEM and XRD, the plating process is initially faster on magnesium than on the alloy. •A chrome-free, alkaline electroless nickel coating is developed for Mg and AZ31B.•A rougher surface promotes the more rapid formation of the Ni-P coating.•The presence of fluoride and sodium ions promotes the formation of NaMgF3 crystals.•The presence of zinc enriched layer at the surface of AZ31B alloy is demonstrated.•A schematic overview of the formation of Ni-P coating on Mg and AZ31B is proposed.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2017.04.059</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5431-2603</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2017-07, Vol.321, p.309-320
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_journals_1955051445
source ScienceDirect Freedom Collection
subjects Backscattering
Chemical evolution
Coating effects
Coatings grown
Diffraction
Electroless coatings
Electroless plating
Fluorine
Gravimetry
Hexavalent chromium
Kinetics
Magnesium
Magnesium base alloys
Morphology
Scanning electron microscopy
Substrates
Surface morphology
X-ray diffraction
title Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20formation%20of%20alkaline%20electroless%20Ni-P%20coating%20on%20magnesium%20and%20AZ31B%20magnesium%20alloy&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Zuleta,%20A.A.&rft.date=2017-07-15&rft.volume=321&rft.spage=309&rft.epage=320&rft.pages=309-320&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2017.04.059&rft_dat=%3Cproquest_cross%3E1955051445%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-776eaa7072454be7bb62f3ef9bb5b14478dd2dd5850e7a71afa6e3afca879fe43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1955051445&rft_id=info:pmid/&rfr_iscdi=true