Loading…

Influence of structure-property relationship on the optical, thermal and mechanical properties of castor oil based transparent polyurethane for catheter applications

Castor oil based transparent polyurethane elastomers were synthesized, which can be used as an advanced catheter material. The effect of NCO: OH ratio on the structural, optical, thermal and physicomechanical properties of polyurethanes (PU) has been studied. The optical properties of the PU was ana...

Full description

Saved in:
Bibliographic Details
Published in:Journal of macromolecular science. Part A, Pure and applied chemistry Pure and applied chemistry, 2017-11, Vol.54 (11), p.772-781
Main Authors: Mathew, Aiswarea, Kurmvanshi, Surendra, Mohanty, Smita, K. Nayak, Sanjay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Castor oil based transparent polyurethane elastomers were synthesized, which can be used as an advanced catheter material. The effect of NCO: OH ratio on the structural, optical, thermal and physicomechanical properties of polyurethanes (PU) has been studied. The optical properties of the PU was analysed by studying its percentage transmittance and haze. The results showed a high transparency of 90.7% for the PU with a NCO: OH ratio of 0.9:1. Differential scanning calorimetry (DSC) analysis revealed an increase in the glass transition temperature (T g ) of PU with increasing hard segment content whereas thermogravimetric analysis (TGA) shows an increase in the initial decomposition temperature of PU from 262 to 268°C upon increasing the NCO: OH ratio from 0.9 to 1.5. A similar trend of increment in the tensile properties of PU has been observed as a consequence of increasing the molar ratio of NCO: OH. In vitro cytotoxicity analysis of PU was studied using human embryonic kidney (HEK293) cell line that revealed the nontoxic character of PU.
ISSN:1060-1325
1520-5738
DOI:10.1080/10601325.2017.1332468