Loading…
Active vibration control of a nonlinear three-dimensional Euler–Bernoulli beam
In this paper, boundary control is designed to suppress the vibration of a nonlinear three-dimensional Euler–Bernoulli beam. Considering the coupling effect between the axial deformation and the transverse displacement, the dynamics of the beam are modeled as a distributed parameter system described...
Saved in:
Published in: | Journal of vibration and control 2017-11, Vol.23 (19), p.3196-3215 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c309t-9b6a2baf6b4fe60a4885e4988f9aaac93e6e9c9d92c5e1d4c9a237d5917808e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c309t-9b6a2baf6b4fe60a4885e4988f9aaac93e6e9c9d92c5e1d4c9a237d5917808e23 |
container_end_page | 3215 |
container_issue | 19 |
container_start_page | 3196 |
container_title | Journal of vibration and control |
container_volume | 23 |
creator | He, Wei Yang, Chuan Zhu, Juxing Liu, Jin-Kun He, Xiuyu |
description | In this paper, boundary control is designed to suppress the vibration of a nonlinear three-dimensional Euler–Bernoulli beam. Considering the coupling effect between the axial deformation and the transverse displacement, the dynamics of the beam are modeled as a distributed parameter system described by three partial differential equations (PDEs) and 12 ordinary differential equations (ODEs). Firstly, model-based boundary control is designed based on a mathematical model of the system. Subsequently, adaptive control is proposed when there are parameter uncertainties in the model. The uniform boundedness and uniform ultimate boundedness are proved under the proposed control laws. Finally, numerical simulations illustrate the effectiveness of the results. |
doi_str_mv | 10.1177/1077546315627722 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1955872785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1077546315627722</sage_id><sourcerecordid>1955872785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-9b6a2baf6b4fe60a4885e4988f9aaac93e6e9c9d92c5e1d4c9a237d5917808e23</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFb3LgdcR2cm87uspf5AQRe6DjeTG01JM3UmKbjzHXxDn8SUuhDB1T1wvnO4HELOObvk3JgrzoxRUudcaWGMEAdkwo3kmXBWH456tLOdf0xOUloxxqTkbEIeZ75vtki3TRmhb0JHfej6GFoaagq0C13bdAiR9q8RMauaNXZpxKCli6HF-PXxeY2xC0PbNrREWJ-SoxrahGc_d0qebxZP87ts-XB7P58tM58z12eu1CBKqHUpa9QMpLUKpbO2dgDgXY4anXeVE14hr6R3IHJTKceNZRZFPiUX-95NDG8Dpr5YhSGOf6WCO6WsEcaqkWJ7yseQUsS62MRmDfG94KzY7Vb83W2MZPtIghf8Vfof_w0_iG45</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955872785</pqid></control><display><type>article</type><title>Active vibration control of a nonlinear three-dimensional Euler–Bernoulli beam</title><source>Sage Journals Online</source><creator>He, Wei ; Yang, Chuan ; Zhu, Juxing ; Liu, Jin-Kun ; He, Xiuyu</creator><creatorcontrib>He, Wei ; Yang, Chuan ; Zhu, Juxing ; Liu, Jin-Kun ; He, Xiuyu</creatorcontrib><description>In this paper, boundary control is designed to suppress the vibration of a nonlinear three-dimensional Euler–Bernoulli beam. Considering the coupling effect between the axial deformation and the transverse displacement, the dynamics of the beam are modeled as a distributed parameter system described by three partial differential equations (PDEs) and 12 ordinary differential equations (ODEs). Firstly, model-based boundary control is designed based on a mathematical model of the system. Subsequently, adaptive control is proposed when there are parameter uncertainties in the model. The uniform boundedness and uniform ultimate boundedness are proved under the proposed control laws. Finally, numerical simulations illustrate the effectiveness of the results.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/1077546315627722</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Active control ; Adaptive control ; Boundary control ; Computer simulation ; Deformation ; Deformation effects ; Differential equations ; Euler-Bernoulli beams ; Mathematical models ; Nonlinear control ; Ordinary differential equations ; Partial differential equations ; Vibration ; Vibration control</subject><ispartof>Journal of vibration and control, 2017-11, Vol.23 (19), p.3196-3215</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-9b6a2baf6b4fe60a4885e4988f9aaac93e6e9c9d92c5e1d4c9a237d5917808e23</citedby><cites>FETCH-LOGICAL-c309t-9b6a2baf6b4fe60a4885e4988f9aaac93e6e9c9d92c5e1d4c9a237d5917808e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Yang, Chuan</creatorcontrib><creatorcontrib>Zhu, Juxing</creatorcontrib><creatorcontrib>Liu, Jin-Kun</creatorcontrib><creatorcontrib>He, Xiuyu</creatorcontrib><title>Active vibration control of a nonlinear three-dimensional Euler–Bernoulli beam</title><title>Journal of vibration and control</title><description>In this paper, boundary control is designed to suppress the vibration of a nonlinear three-dimensional Euler–Bernoulli beam. Considering the coupling effect between the axial deformation and the transverse displacement, the dynamics of the beam are modeled as a distributed parameter system described by three partial differential equations (PDEs) and 12 ordinary differential equations (ODEs). Firstly, model-based boundary control is designed based on a mathematical model of the system. Subsequently, adaptive control is proposed when there are parameter uncertainties in the model. The uniform boundedness and uniform ultimate boundedness are proved under the proposed control laws. Finally, numerical simulations illustrate the effectiveness of the results.</description><subject>Active control</subject><subject>Adaptive control</subject><subject>Boundary control</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Differential equations</subject><subject>Euler-Bernoulli beams</subject><subject>Mathematical models</subject><subject>Nonlinear control</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Vibration</subject><subject>Vibration control</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFb3LgdcR2cm87uspf5AQRe6DjeTG01JM3UmKbjzHXxDn8SUuhDB1T1wvnO4HELOObvk3JgrzoxRUudcaWGMEAdkwo3kmXBWH456tLOdf0xOUloxxqTkbEIeZ75vtki3TRmhb0JHfej6GFoaagq0C13bdAiR9q8RMauaNXZpxKCli6HF-PXxeY2xC0PbNrREWJ-SoxrahGc_d0qebxZP87ts-XB7P58tM58z12eu1CBKqHUpa9QMpLUKpbO2dgDgXY4anXeVE14hr6R3IHJTKceNZRZFPiUX-95NDG8Dpr5YhSGOf6WCO6WsEcaqkWJ7yseQUsS62MRmDfG94KzY7Vb83W2MZPtIghf8Vfof_w0_iG45</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>He, Wei</creator><creator>Yang, Chuan</creator><creator>Zhu, Juxing</creator><creator>Liu, Jin-Kun</creator><creator>He, Xiuyu</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201711</creationdate><title>Active vibration control of a nonlinear three-dimensional Euler–Bernoulli beam</title><author>He, Wei ; Yang, Chuan ; Zhu, Juxing ; Liu, Jin-Kun ; He, Xiuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-9b6a2baf6b4fe60a4885e4988f9aaac93e6e9c9d92c5e1d4c9a237d5917808e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active control</topic><topic>Adaptive control</topic><topic>Boundary control</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Differential equations</topic><topic>Euler-Bernoulli beams</topic><topic>Mathematical models</topic><topic>Nonlinear control</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Vibration</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Yang, Chuan</creatorcontrib><creatorcontrib>Zhu, Juxing</creatorcontrib><creatorcontrib>Liu, Jin-Kun</creatorcontrib><creatorcontrib>He, Xiuyu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Wei</au><au>Yang, Chuan</au><au>Zhu, Juxing</au><au>Liu, Jin-Kun</au><au>He, Xiuyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active vibration control of a nonlinear three-dimensional Euler–Bernoulli beam</atitle><jtitle>Journal of vibration and control</jtitle><date>2017-11</date><risdate>2017</risdate><volume>23</volume><issue>19</issue><spage>3196</spage><epage>3215</epage><pages>3196-3215</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>In this paper, boundary control is designed to suppress the vibration of a nonlinear three-dimensional Euler–Bernoulli beam. Considering the coupling effect between the axial deformation and the transverse displacement, the dynamics of the beam are modeled as a distributed parameter system described by three partial differential equations (PDEs) and 12 ordinary differential equations (ODEs). Firstly, model-based boundary control is designed based on a mathematical model of the system. Subsequently, adaptive control is proposed when there are parameter uncertainties in the model. The uniform boundedness and uniform ultimate boundedness are proved under the proposed control laws. Finally, numerical simulations illustrate the effectiveness of the results.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1077546315627722</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-5463 |
ispartof | Journal of vibration and control, 2017-11, Vol.23 (19), p.3196-3215 |
issn | 1077-5463 1741-2986 |
language | eng |
recordid | cdi_proquest_journals_1955872785 |
source | Sage Journals Online |
subjects | Active control Adaptive control Boundary control Computer simulation Deformation Deformation effects Differential equations Euler-Bernoulli beams Mathematical models Nonlinear control Ordinary differential equations Partial differential equations Vibration Vibration control |
title | Active vibration control of a nonlinear three-dimensional Euler–Bernoulli beam |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20vibration%20control%20of%20a%20nonlinear%20three-dimensional%20Euler%E2%80%93Bernoulli%20beam&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=He,%20Wei&rft.date=2017-11&rft.volume=23&rft.issue=19&rft.spage=3196&rft.epage=3215&rft.pages=3196-3215&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/1077546315627722&rft_dat=%3Cproquest_cross%3E1955872785%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-9b6a2baf6b4fe60a4885e4988f9aaac93e6e9c9d92c5e1d4c9a237d5917808e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1955872785&rft_id=info:pmid/&rft_sage_id=10.1177_1077546315627722&rfr_iscdi=true |